# Задания для самостоятельной работы студентов Модуль 6

| «Механические колебания»                                | 3  |
|---------------------------------------------------------|----|
| Тема 1. Кинематика гармонических колебаний              | 3  |
| Тема 2. Сложение колебаний                              | 8  |
| Тема 3. Динамика гармонических колебаний                | 14 |
| Тема 4. Маятники                                        | 17 |
| Тема 5. Затухающие колебания                            | 24 |
| Тема 6. Вынужденные колебания. Резонанс                 | 29 |
| Тема 7. Волны в упругой среде. Уравнение плоской волны  | 33 |
| «Электромагнитные колебания и волны»                    | 38 |
| Тема 8. Колебательный контур                            | 38 |
| Тема 9. Электромагнитные волны в вакууме и диэлектриках | 44 |
| Тема 10. Энергия электромагнитной волны                 | 49 |

## Таблица вариантов

| № вар    |      |       |       |       | Номера | а задач |       |       |       |       |
|----------|------|-------|-------|-------|--------|---------|-------|-------|-------|-------|
| 1        | 6.1  | 6.81  | 6.123 | 6.139 | 6.219  | 6.232   | 6.306 | 6.307 | 6.316 | 6.404 |
| 2        | 6.2  | 6.80  | 6.124 | 6.140 | 6.219  | 6.233   | 6.305 | 6.308 | 6.357 | 6.403 |
| 3        | 6.3  | 6.79  | 6.125 | 6.141 | 6.219  | 6.234   | 6.304 | 6.309 | 6.358 | 6.402 |
| 4        | 6.4  | 6.78  | 6.126 | 6.142 | 6.220  | 6.235   | 6.303 | 6.310 | 6.359 | 6.401 |
| 5        | 6.5  | 6.77  | 6.127 | 6.143 | 6.221  | 6.236   | 6.302 | 6.311 | 6.360 | 6.400 |
| 6        | 6.6  | 6.76  | 6.128 | 6.144 | 6.222  | 6.237   | 6.298 | 6.312 | 6.384 | 6.395 |
| 7        | 6.7  | 6.75  | 6.129 | 6.145 | 6.223  | 6.238   | 6.299 | 6.313 | 6.385 | 6.396 |
| 8        | 6.8  | 6.74  | 6.117 | 6.146 | 6.224  | 6.239   | 6.300 | 6.314 | 6.386 | 6.397 |
| 9        | 6.9  | 6.73  | 6.118 | 6.179 | 6.225  | 6.242   | 6.301 | 6.315 | 6.387 | 6.398 |
| 10       | 6.10 | 6.72  | 6.119 | 6.178 | 6.226  | 6.241   | 6.280 | 6.316 | 6.388 | 6.399 |
| 11       | 6.11 | 6.71  | 6.120 | 6.177 | 6.227  | 6.240   | 6.281 | 6.317 | 6.389 | 6.404 |
| 12       | 6.12 | 6.70  | 6.121 | 6.176 | 6.191  | 6.251   | 6.282 | 6.318 | 6.390 | 6.403 |
| 13       | 6.13 | 6.69  | 6.122 | 6.175 | 6.190  | 6.252   | 6.283 | 6.319 | 6.391 | 6.402 |
| 14       | 6.14 | 6.68  | 6.106 | 6.174 | 6.189  | 6.253   | 6.284 | 6.320 | 6.392 | 6.401 |
| 15       | 6.15 | 6.67  | 6.107 | 6.173 | 6.188  | 6.254   | 6.285 | 6.321 | 6.393 | 6.400 |
| 16       | 6.16 | 6.66  | 6.108 | 6.172 | 6.187  | 6.255   | 6.286 | 6.322 | 6.394 | 6.395 |
| 17       | 6.17 | 6.65  | 6.109 | 6.171 | 6.186  | 6.256   | 6.287 | 6.323 | 6.357 | 6.396 |
| 18       | 6.18 | 6.64  | 6.110 | 6.170 | 6.185  | 6.243   | 6.288 | 6.324 | 6.358 | 6.397 |
| 19       | 6.19 | 6.63  | 6.111 | 6.169 | 6.184  | 6.244   | 6.289 | 6.341 | 6.359 | 6.398 |
| 20       | 6.20 | 6.62  | 6.112 | 6.168 | 6.183  | 6.245   | 6.290 | 6.342 | 6.360 | 6.399 |
| 21       | 6.21 | 6.61  | 6.113 | 6.167 | 6.182  | 6.246   | 6.291 | 6.343 | 6.376 | 6.404 |
| 22       | 6.22 | 6.60  | 6.114 | 6.166 | 6.181  | 6.247   | 6.292 | 6.344 | 6.377 | 6.403 |
| 23       | 6.23 | 6.59  | 6.115 | 6.165 | 6.180  | 6.248   | 6.293 | 6.345 | 6.378 | 6.402 |
| 24       | 6.24 | 6.58  | 6.116 | 6.147 | 6.192  | 6.249   | 6.294 | 6.346 | 6.379 | 6.401 |
| 25       | 6.25 | 6.57  | 6.105 | 6.148 | 6.193  | 6.250   | 6.295 | 6.347 | 6.380 | 6.400 |
| 26       | 6.26 | 6.56  | 6.104 | 6.149 | 6.194  | 6.240   | 6.296 | 6.348 | 6.381 | 6.395 |
| 27       | 6.27 | 6.55  | 6.103 | 6.150 | 6.195  | 6.241   | 6.297 | 6.349 | 6.382 | 6.396 |
| 28       | 6.28 | 6.54  | 6.102 | 6.151 | 6.196  | 6.242   | 6.257 | 6.350 | 6.383 | 6.397 |
| 29       | 6.29 | 6.53  | 6.101 | 6.152 | 6.197  | 6.228   | 6.258 | 6.351 | 6.366 | 6.398 |
| 30       | 6.30 | 6.52  | 6.117 | 6.153 | 6.198  | 6.229   | 6.259 | 6.352 | 6.367 | 6.399 |
| 31       | 6.31 | 6.51  | 6.118 | 6.154 | 6.199  | 6.230   | 6.260 | 6.353 | 6.368 | 6.404 |
| 32       | 6.32 | 6.85  | 6.119 | 6.155 | 6.200  | 6.231   | 6.261 | 6.354 | 6.369 | 6.403 |
| 33       | 6.33 | 6.86  | 6.120 | 6.156 | 6.201  | 6.232   | 6.262 | 6.355 | 6.370 | 6.402 |
| 34       | 6.34 | 6.87  | 6.121 | 6.157 | 6.202  | 6.233   | 6.263 | 6.356 | 6.371 | 6.401 |
| 35       | 6.35 | 6.88  | 6.122 | 6.158 | 6.203  | 6.234   | 6.264 | 6.325 | 6.372 | 6.400 |
| 36       | 6.36 | 6.89  | 6.101 | 6.159 | 6.204  | 6.235   | 6.265 | 6.326 | 6.373 | 6.395 |
| 37       | 6.37 | 6.90  | 6.102 | 6.160 | 6.205  | 6.236   | 6.266 | 6.327 | 6.374 | 6.396 |
| 38       | 6.38 | 6.91  | 6.103 | 6.161 | 6.206  | 6.237   | 6.267 | 6.328 | 6.375 | 6.397 |
| 39       | 6.39 | 6.92  | 6.104 | 6.162 | 6.207  | 6.238   | 6.268 | 6.329 | 6.376 | 6.398 |
| 40       | 6.40 | 6.93  | 6.105 | 6.163 | 6.208  | 6.239   | 6.269 | 6.330 | 6.377 | 6.399 |
| 41       | 6.41 | 6.94  | 6.114 | 6.164 | 6.209  | 6.251   | 6.270 | 6.331 | 6.378 | 6.404 |
| 42       | 6.42 | 6.95  | 6.113 | 6.130 | 6.210  | 6.252   | 6.271 | 6.332 | 6.379 | 6.403 |
| 43       | 6.43 | 6.96  | 6.112 | 6.131 | 6.211  | 6.253   | 6.272 | 6.333 | 6.380 | 6.402 |
| 44       | 6.44 | 6.97  | 6.116 | 6.132 | 6.212  | 6.254   | 6.273 | 6.334 | 6.361 | 6.401 |
| 45       | 6.45 | 6.98  | 6.115 | 6.133 | 6.213  | 6.255   | 6.274 | 6.335 | 6.362 | 6.400 |
| 46       | 6.46 | 6.99  | 6.106 | 6.134 | 6.214  | 6.256   | 6.275 | 6.336 | 6.363 | 6.395 |
| 47<br>48 | 6.47 | 6.100 | 6.107 | 6.135 | 6.215  | 6.228   | 6.276 | 6.337 | 6.364 | 6.396 |
| 48       | 6.48 | 6.84  | 6.108 | 6.136 | 6.216  | 6.229   | 6.277 | 6.338 | 6.381 | 6.397 |
|          | 6.49 | 6.83  | 6.109 | 6.137 | 6.217  | 6.230   | 6.278 | 6.339 | 6.382 | 6.398 |
| 50       | 6.50 | 6.82  | 6.110 | 6.138 | 6.218  | 6.231   | 6.279 | 6.340 | 6.383 | 6.399 |

#### «Механические колебания»

## Тема 1. Кинематика гармонических колебаний

- 6.1. Уравнение колебаний точки имеет вид  $x = A \cos \omega (t + \tau)$ , где  $\omega = \pi c^{-1}$ ,  $\tau = 0,2$  с. Определить период T и начальную фазу  $\varphi$  колебаний.
- 6.2. Определить период T, частоту v и начальную фазу  $\varphi$  колебаний, заданн ых у р а внением  $x = A \sin \omega (t + \tau)$ , где  $\omega = 2.5\pi \, \mathrm{c}^{-1}$ ,  $\tau = 0.4 \, \mathrm{c}$ .
- 6.3. Т очка совершает колебания по закону  $x = A \cos(\omega t + \varphi)$ , где A = 4 см. Опре делить начальную фазу  $\varphi$ , если x(0) = 2 см и  $\dot{x}(0) < 0$ . Построить вектор ную диаграмму для момента t = 0.
- 6.4. Точка совершает колебания по закону  $x = A \cos(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если  $x(0) = -2\sqrt{2}$  см и  $\dot{x}(0) < 0$ . Построить векторную диаграмму для момента t = 0.
- 6.5. Точка совершает колебания по закону  $x = A \cos(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если x(0) = 2 см и  $\dot{x}(0) > 0$ . Построить векторную диаграмму для момента t = 0.
- 6.6. Точка совершает колебания по закону  $x = A \cos(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если  $x(0) = -2\sqrt{3}$  см и  $\dot{x}(0) > 0$ . Построить векторную диаграмму для момента t = 0.
- 6.7. Точка совершает колебания по закону  $x = A \sin(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если x(0) = 2 см и  $\dot{x}(0) < 0$ . Построить векторную диаграмму для момента t = 0.
- 6.8. Точка совершает колебания по закону  $x = A \sin(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если  $x(0) = 2\sqrt{3}$  см и  $\dot{x}(0) > 0$ . Построить векторную диаграмму для момента t = 0.
- 6.9. Точка совершает колебания по закону  $x = A \sin(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если  $x(0) = -2\sqrt{2}$  см и  $\dot{x}(0) < 0$ . Построить векторную диаграмму для момента t = 0.

- 6.10. Точка совершает колебания по закону  $x = A \sin(\omega t + \varphi)$ , где A = 4 см. Определить начальную фазу  $\varphi$ , если  $x(0) = -2\sqrt{3}$  см и  $\dot{x}(0) > 0$ . Построить векторную диаграмму для момента t = 0.
- 6.11. Точка совершает колебания по закону  $x = A \cos(\omega t + \varphi)$ , где A = 2 см;  $\omega = \pi$  с<sup>-1</sup>;  $\varphi = \pi/4$  рад. Построить графики зависимости от времени: 1) смещения x(t); 2) скорости  $\dot{x}(t)$ ; 3) ускорения  $\ddot{x}(t)$ .
- 6.12. Точка совершает колебания с амплитудой A=4 см и периодом T=2 с. Написать уравнение этих колебаний, считая, что в момент t=0 смещения x(0)=0 и  $\dot{x}(0)<0$ . Определить фазу ( $\omega t+\varphi$ ) для двух моментов времени: 1) когда смещение x=1 см и  $\dot{x}(0)>0$ , 2) когда скорость  $\dot{x}(0)=-6$  см/с и x<0.
- 6.13. Точка равномерно движется по окружности против часовой стрелки с периодом T=6 с. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось x, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось x равна нулю. Найти смещение x, скорость  $\dot{x}$  и ускорение  $\ddot{x}$  проекции точки в момент t=1 с.
- 6.14. Определить максимальные значения скорости  $\dot{x}_{\text{max}}$  и ускорения  $\ddot{x}_{\text{max}}$  точки, совершающей гармонические колебания с амплитудой A=3 см и угловой частотой  $\omega=\pi/2$  с<sup>-1</sup>.
- 6.15. Точка совершает колебания по закону  $x = A \cos \omega t$ , где A = 5 см;  $\omega = 2$  с<sup>-1</sup>. Определить ускорение  $|\ddot{x}|$  точки в момент времени, когда ее скорость  $\dot{x} = 8$  см/с.
- 6.16. Точка совершает гармонические колебания. Наибольшее смещение  $x_{\text{max}}$  точки равно 10 см, наибольшая скорость  $\dot{x}_{\text{max}} = 20$  см/с. Найти угловую частоту  $\omega$  колебаний и максимальное ускорение  $\ddot{x}_{\text{max}}$  точки.
- 6.17. Максимальная скорость  $\dot{x}_{\rm max}$  точки, совершающей гармонические колебания, равна 10 см/с, максимальное ускорение  $\ddot{x}_{\rm max} = 100$  см/с<sup>2</sup>. Найти угловую частоту  $\omega$  колебаний, их период T и амплитуду A. Написать уравнение колебаний, приняв начальную фазу равной нулю.
- 6.18. Точка совершает колебания по закону  $x = A \sin \omega t$ . В некоторый момент времени смещение  $x_1$  точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение  $x_2$  стало равным 8 см. Найти амплитуду A колебаний.
- 6.19. Колебания точки происходят по закону  $x = A \cos(\omega t + \varphi)$ . В некоторый момент времени смещение x точки равно 5 см, ее скорость  $\dot{x} = 20$

- см/с и ускорение  $\ddot{x} = -80$  см/с<sup>2</sup>. Найти амплитуду A, угловую частоту  $\omega$ , период T колебаний и фазу ( $\omega t + \varphi$ ) в рассматриваемый момент времени.
- 6.20. Написать уравнение гармонического колебательного движения с амплитудой 5 см, если в 1 мин совершается 150 колебаний и начальная фаза колебаний равна 45°. Начертить график этого движения.
- 6.21. Написать уравнение гармонического колебательного движения с амплитудой 0,1 м, периодом 4 с и начальной фазой, равной нулю.
- 6.22. Амплитуда гармонических колебаний 50 мм, период 4 с и начальная фаза  $\pi/4$ . 1) Написать уравнение этого колебания. 2) Найти смещение колеблющейся точки от положения равновесия при t=0 и t=1,5 с. 3) Начертить график этого движения.
- 6.23. Написать уравнение гармонического колебательного движения, если начальная фаза колебаний равна 0. Амплитуда колебаний 5 см и период колебаний 8 с. Начертить график колебаний.
- 6.24. Написать уравнение гармонического колебательного движения, если начальная фаза колебаний равна  $\pi/2$ . Амплитуда колебаний 5 см и период колебаний 8 с. Начертить график колебаний.
- 6.25. Написать уравнение гармонического колебательного движения, если начальная фаза колебаний равна  $\pi$ . Амплитуда колебаний 5 см и период колебаний 8 с. Начертить график колебаний.
- 6.26. Написать уравнение гармонического колебательного движения, если начальная фаза колебаний равна  $3\pi/2$ . Амплитуда колебаний 5 см и период колебаний 8 с. Начертить график колебаний.
- 6.27. Написать уравнение гармонического колебательного движения, если начальная фаза колебаний равна  $2\pi$ . Амплитуда колебаний 5 см и период колебаний 8 с. Начертить график колебаний.
- 6.28. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами ( $A_1 = A_2 = 2$  см) и одинаковыми периодами ( $T_1 = T_2 = 8$  с), но имеющими разность фаз  $\pi/4$ .
- 6.29. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами ( $A_1 = A_2 = 2$  см) и одинаковыми периодами ( $T_1 = T_2 = 8$  с), но имеющими разность фаз  $\pi/2$ .
- 6.30. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами ( $A_1=A_2=2$  см) и одинаковыми периодами ( $T_1=T_2=8$  с), но имеющими разность фаз  $\pi$ .

- 6.31. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами ( $A_1 = A_2 = 2$  см) и одинаковыми периодами ( $T_1 = T_2 = 8$  с), но имеющими разность фаз  $2\pi$ .
- 6.32. Через сколько времени от начала движения точка, совершающая гармоническое колебание, сместится от положения равновесия на половину амплитуды? Период колебаний равен 24 с, начальная фаза равна нулю.
- 6.33. Начальная фаза гармонического колебания равна нулю. Через какую долю периода скорость точки будет равна половине ее максимальной скорости?
- 6.34. Через сколько времени от начала движения точка, совершающая колебательное движение по уравнению  $x = 7 \sin 0.5 \pi t$ , проходит путь от положения равновесия до максимального смещения?
- 6.35. Амплитуда гармонического колебания 5 см, период 4 с. Найти максимальную скорость колеблющейся точки и ее максимальное ускорение.
- 6.36. Уравнение движения точки дано в виде  $x = 2 \sin\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$  см. Найти: 1) период колебаний, 2) максимальную скорость точки, 3) ее максимальное ускорение.
- 6.37. Уравнение движения точки дано в виде  $x = \sin \frac{\pi}{6} t$ . Найти моменты времени, в которые достигаются максимальная скорость и максимальное ускорение.
- 6.38. Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда смещение точки от положения равновесия равно 25 мм.
- 6.39. Написать уравнение гармонического колебательного движения, если максимальное ускорение точки 49,3 см/с², период колебаний 2 с и смещение точки от положения равновесия в начальный момент времени 25 мм.
- 6.40. Начальная фаза гармонического колебания равна нулю. При смещении точки от положения равновесия 2,4 см скорость точки равна 3 см/с, а при смещении 2,8 см скорость равна 2 см/с. Найти амплитуду и период этого колебания.
- 6.41. Гармонические колебания величины s описываются уравнением  $s = 0.02 cos \left(6\pi t + \frac{\pi}{3}\right)$ . Определить: 1) амплитуду колебаний; 2) циклическую частоту; 3) частоту колебаний; 4) период колебаний.

- 6.42. Записать уравнение гармонического колебательного движения точки, совершающей колебания с амплитудой A=8 см, если за t=1 мин совершается n=120 колебаний и начальная фаза колебаний равна  $45^{\circ}$ .
- 6.43. Материальная точка совершает гармонические колебания с амплитудой A=4 см и периодом T=2 с. Написать уравнение движения точки, если ее движение начинается из положения  $x_0=2$  см.
- 6.44. Точка совершает гармонические колебания с периодом T=6 с и начальной фазой, равной нулю. Определить, за какое время, считая от начала движения, точка сместится от положения равновесия на половину амплитуды.
- 6.45. Написать уравнение гармонического колебания точки, если его амплитуда A=15 см, максимальная скорость колеблющейся точки  $v_{\rm max}=30$  см/с, начальная фаза  $\varphi=10^\circ$ .
- 6.46. Точка совершает гармонические колебания по закону  $x = 3 \cos\left(\frac{\pi}{2}t + \frac{\pi}{8}\right)$  м. Определить: 1) период T колебаний; 2) максимальную скорость  $v_{\text{max}}$  точки; 3) максимальное ускорение  $a_{\text{max}}$  точки.
- 6.47. Точка совершает гармонические колебания с амплитудой A=10 см и периодом T=5 с. Определить для точки: 1) максимальную скорость; 2) максимальное ускорение.
- 6.48. Скорость материальной точки, совершающей гармонические колебания, задается уравнением  $v(t) = -6 \sin 2\pi t$ . Записать зависимость смещения этой точки от времени.
- 6.49. Материальная точка совершает колебания согласно уравнению  $x = A \sin \omega t$ . В какой-то момент времени смещение точки  $x_1 = 15$  см. При возрастании фазы колебаний в два раза смещение  $x_2$  оказалось равным 24 см. Определить амплитуду A колебаний.
- 6.50. Материальная точка совершает гармонические колебания согласно уравнению  $x = 0.02 \cos\left(\pi t + \frac{\pi}{2}\right)$ , м. Определить: 1) амплитуду колебаний; 2) период колебаний; 3) начальную фазу колебаний; 4) максимальную скорость точки; 5) максимальное ускорение точки; 6) через сколько времени после начала отсчета точка будет проходить через положение равновесия.

#### Тема 2. Сложение колебаний

- 6.51. Два одинаково направленных гармонических колебания одного периода с амплитудами  $A_1=10$  см и  $A_2=6$  см складываются в одно колебание с амплитудой A=14 см. Найти разность фаз  $\Delta \varphi$  складываемых колебаний.
- 6.52. Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз  $\Delta \varphi$  складываемых колебаний.
- 6.53. Определить амплитуду A и начальную фазу  $\varphi$  результирующего колебания, возникающего при сложении двух колебаний одинаковых направления и периода:  $x_1 = A_1 \sin \omega t$  и  $x_2 = A_2 \sin \omega (t + \tau)$ , где  $A_1 = A_2 = 1$  см;  $\omega = \pi$  с<sup>-1</sup>;  $\tau = 0.5$  с. Найти уравнение результирующего колебания.
- 6.54. Точка участвует в двух одинаково направленных колебаниях:  $x_1 = A_1 \sin \omega t$  и  $x_2 = A_2 \cos \omega t$ , где  $A_1 = 1$  см;  $A_2 = 2$  см;  $\omega = 1$  с<sup>-1</sup>. Определить амплитуду A результирующего колебания, его частоту v и начальную фазу  $\varphi$ . Найти уравнение этого движения.
- 6.55. Складываются два гармонических колебания одного направления с одинаковыми периодами  $T_1 = T_2 = 1,5$  с и амплитудами  $A_1 = A_2 = 2$  см. Начальные фазы колебаний  $\varphi_1 = \pi/2$  и  $\varphi_2 = \pi/3$ . Определить амплитуду A и начальную фазу  $\varphi$  результирующего колебания. Найти его уравнение и построить с соблюдением масштаба векторную диаграмму сложения амплитуд.
- 6.56. Складываются три гармонических колебания одного направления с одинаковыми периодами  $T_1 = T_2 = T_3 = 2$  с и амплитудами  $A_1 = A_2 = A_3 = 3$  см. Начальные фазы колебаний  $\varphi_1 = 0$ ,  $\varphi_2 = \pi/3$ ,  $\varphi_3 = 2\pi/3$ . Построить векторную диаграмму сложения амплитуд. Определить из чертежа амплитуду A и начальную фазу  $\varphi$  результирующего колебания. Найти его уравнение.
- 6.57. Складываются два гармонических колебания одинаковой частоты и одинакового направления:  $x_1 = A_1 \cos(\omega t + \varphi_1)$  и  $x_2 = A_2 \cos(\omega t + \varphi_2)$ . Начертить векторную диаграмму для момента времени t=0. Определить аналитически амплитуду A и начальную фазу  $\varphi$  результирующего колебания. Отложить A и  $\varphi$  на векторной диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для следующего случая:  $A_1 = 1$  см,  $\varphi_1 = \pi/3$ ;  $A_2 = 2$  см,  $\varphi_2 = 5\pi/6$ .

- 6.58. Складываются два гармонических колебания одинаковой частоты и одинакового направления:  $x_1 = A_1 \cos(\omega t + \varphi_1)$  и  $x_2 = A_2 \cos(\omega t + \varphi_2)$ . Начертить векторную диаграмму для момента времени t = 0. Определить аналитически амплитуду A и начальную фазу  $\varphi$  результирующего колебания. Отложить A и  $\varphi$  на векторной диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для следующего случая:  $A_1 = 1$  см,  $\varphi_1 = 2\pi/3$ ;  $A_2 = 1$  см,  $\varphi_2 = 7\pi/6$ .
- 6.59. Два камертона звучат одновременно. Частоты  $\nu_1$  и  $\nu_2$  их колебаний соответственно равны 440 и 440,5 Гц. Определить период T биений.
- 6.60. Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями  $x = A_1 \sin \omega t$  и  $y = A_2 \cos \omega (t + \tau)$ , где  $A_1 = 2$  см,  $A_1 = 1$  см,  $\omega = \pi$  с<sup>-1</sup>,  $\tau = 0.5$  с. Найти уравнение траектории и построить ее, показав направление движения точки.
- 6.61. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_1 \cos \omega t$  и  $y = A_2 \cos \omega (t+\tau)$ , где  $A_1 = 4$  см,  $A_2 = 8$  см,  $\omega = \pi$  с<sup>-1</sup>,  $\tau = 1$  с. Найти уравнение траектории точки и построить график ее движения.
- 6.62. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A \cos \omega t$  и  $y = A \cos \omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см.
- 6.63. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A\cos\omega t$  и  $y = A_1\cos\omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см,  $A_1 = 3$  см.
- 6.64. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A\cos\omega t$  и  $y = A\cos(\omega t + \varphi_1)$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см,  $\varphi_1 = \pi/2$ .
- 6.65. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_2 \cos \omega t$  и  $y = A \cos(\omega t + \varphi_2)$ . Найти уравнение траектории точки, построить ее с соблюдением

- масштаба и указать направление движения. Принять: A=2 см,  $A_2=1$  см;  $\varphi_2=\pi$ .
- 6.66. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_1 \cos \omega t$  и  $y = A_1 \sin \omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять:  $A_1 = 3$  см.
- 6.67. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A\cos\omega t$  и  $y = A_1\sin\omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см,  $A_1 = 3$  см.
- 6.68. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_2 \sin \omega t$  и  $y = A_1 \sin \omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять:  $A_1 = 3$  см,  $A_2 = 1$  см.
- 6.69. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_2 \sin \omega t$  и  $y = A \sin(\omega t + \varphi_2)$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см,  $A_2 = 1$  см;  $\varphi_2 = \pi$ .
- 6.70. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями  $x = A_1 \cos \omega t$  и  $y = A_2 \sin \omega t$ , где  $A_1 = 2$  см,  $A_2 = 1$  см. Найти уравнение траектории точки и построить ее, указав направление движения.
- 6.71. Точка одновременно совершает два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями  $x = A_1 \sin \omega t$  и  $y = A_2 \cos \omega t$ , где  $A_1 = 0.5$  см;  $A_2 = 2$  см. Найти уравнение траектории точки и построить ее, указав направление движения.
- 6.72. Движение точки задано уравнениями  $x = A_1 \sin \omega t$  и  $y = A_2 \sin \omega (t + \tau)$ , где  $A_1 = 10$  см,  $A_2 = 5$  см,  $\omega = 2$  с<sup>-1</sup>,  $\tau = \pi/4$  с. Найти уравнение траектории и скорости точки в момент времени t = 0.5 с.
- 6.73. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями  $x = A_1 \cos \omega t$  и

- $y = -A_2 \cos 2\omega t$ , где  $A_1 = 2$  см,  $A_2 = 1$  см. Найти уравнение траектории и построить ее.
- 6.74. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям и описываемых уравнениями  $x = A \sin \omega t$  и  $y = A \cos 2\omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см.
- 6.75. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям и описываемых уравнениями  $x = A\cos\omega t$  и  $y = A\sin 2\omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см.
- 6.76. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям и описываемых уравнениями  $x = A\cos 2\omega t$  и  $y = A_1\cos \omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см;  $A_1 = 3$  см.
- 6.77. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям и описываемых уравнениями  $x = A_1 \sin \omega t$  и  $y = A \cos \omega t$ . Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A = 2 см;  $A_1 = 3$  см.
- 6.78. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями  $x = A_1 \cos \omega t$  и  $y = A_2 \sin 0.5 \omega t$ , где  $A_1 = 2$  см,  $A_2 = 3$  см. Найти уравнение траектории точки и построить ее, указав направление движения.
- 6.79. Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями  $x = A \sin 3\omega t$  и  $y = A \sin 2\omega t$ . Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять A = 4 см.
- 6.80. Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями  $x = A \sin 3\omega t$  и  $y = A \cos 2\omega t$ . Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять A = 4 см.

- 6.81. Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями  $x = A \sin 3\omega t$  и  $y = A \cos \omega t$ . Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять A = 4 см.
- 6.82. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях  $x = \cos \pi t$  и  $y = \cos \frac{\pi}{2} t$ . Найти траекторию результирующего движения точки.
- 6.83. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях  $x = \sin \pi t$  и  $y = 2\sin(\pi t + \pi/2)$ . Найти траекторию движения точки и вычертить ее с нанесением масштаба.
- 6.84. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях  $x = \sin \pi t$  и  $y = 4\sin(\pi t + \pi)$ . Найти траекторию движения точки и вычертить ее с нанесением масштаба.
- 6.85. Два одинаково направленных гармонических колебания одинакового периода с амплитудами  $A_1 = 4$ см и  $A_2 = 8$  см имеют разность фаз  $\varphi = 45^\circ$ . Определить амплитуду результирующего колебания.
- 6.86. Амплитуда результирующего колебания, получающегося при сложении двух одинаково направленных гармонических колебаний одинаковой частоты, обладающих разностью фаз  $\varphi = 60^{\circ}$ , равна A = 6 см. Определить амплитуду  $A_2$  второго колебания, если  $A_1 = 5$  см.
- 6.87. Определить разность фаз двух одинаково направленных гармонических колебаний одинаковых частоты и амплитуды, если амплитуда их результирующего колебания равна амплитудам складываемых колебаний.
- 6.88. Разность фаз двух одинаково направленных гармонических колебаний одинакового периода T=4 с и одинаковой амплитуды A=5 см составляет  $\pi/4$ . Написать уравнение движения, получающегося в результате сложения этих колебаний, если начальная фаза одного из них равна нулю.
- 6.89. Складываются два гармонических колебания одного направления, описываемых уравнениями  $x_1 = 3\cos(2\pi t)$  см и  $x_2 = 3\cos\left(2\pi t + \frac{\pi}{4}\right)$  см. Определить для результирующего колебания: 1) амплитуду; 2) начальную фазу. Записать уравнение результирующего колебания и представить векторную диаграмму сложения амплитуд.
- 6.90. Точка одновременно участвует в n одинаково направленных гармонических колебаниях одинаковой частоты:  $A_1 \cos(\omega t + \varphi_1)$ ,

- $A_2 \cos(\omega t + \varphi_2)$ , ...,  $A_n \cos(\omega t + \varphi_n)$ . Используя метод вращающегося вектора амплитуды, определить для результирующего колебания: 1) амплитуду; 2) начальную фазу.
- 6.91. Частоты колебаний двух одновременно звучащих камертонов настроены соответственно на 560 и 560,5 Гц. Определить период биений.
- 6.92. В результате сложения двух колебаний, период одного из которых  $T_1 = 0.02$  с, получают биения с периодом  $T_{\sigma} = 0.2$  с. Определить период  $T_2$  второго складываемого колебания.
- 6.93. Складываются два гармонических колебания одного направления, имеющие одинаковые амплитуды и одинаковые начальные фазы, с периодами  $T_1 = 2$  с и  $T_2 = 2,05$  с. Определить: 1) период результирующего колебания; 2) период биения.
- 6.94. Результирующее колебание, получающееся при сложении двух гармонических колебаний одного направления, описывается уравнением вида  $x = A \cos t \cos 45t$  (t в секундах). Определить: 1) циклические частоты складываемых колебаний; 2) период биений результирующего колебания.
- 6.95. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями  $x = 3\cos\omega t$ , см и  $y = 4\cos\omega t$ , см. Определить уравнение траектории точки и вычертить ее с нанесением масштаба.
- 6.96. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями  $x = 3\cos 2\omega t$ , см и  $y = 4\cos(2\omega t + \pi)$ , см. Определить уравнение траектории точки и вычертить ее с нанесением масштаба.
- 6.97. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями  $x = A \sin \omega t$  и  $y = B \cos \omega t$ , где A, B и  $\omega$  положительные постоянные. Определить уравнение траектории точки, вычертить ее с нанесением масштаба, указав направление ее движения по этой траектории.
- 6.98. Точка участвует одновременно в двух гармонических колебаниях одинаковой частоты, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями  $x = A \sin(\omega t + \pi/2)$  и  $y = A \sin \omega t$ . Определить уравнение траектории точки и вычертить ее с нанесением масштаба, указав направление ее движения по этой траектории.
- 6.99. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых

уравнениями  $x = \cos 2\pi t$  и  $y = \cos \pi t$ . Определить уравнение траектории точки и вычертить ее с нанесением масштаба.

6.100. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями  $x = A \sin \omega t$  и  $y = A \sin 2\omega t$ . Определить уравнение траектории точки и вычертить ее с нанесением масштаба.

## Тема 3. Динамика гармонических колебаний

- 6.101. Материальная точка массой m = 50 г совершает колебания, уравнение которых имеет вид  $x = A \cos \omega t$ , где A = 10 см,  $\omega = 5$  с<sup>-1</sup>. Найти силу F, действующую на точку, в момент, когда фаза  $\omega t = \pi/3$ .
- 6.102. Материальная точка массой m = 50 г совершает колебания, уравнение которых имеет вид  $x = A\cos\omega t$ , где A = 10 см,  $\omega = 5$  с<sup>-1</sup>. Найти силу F, действующую на точку, в положении наибольшего смещения точки.
- 6.103. Колебания материальной точки массой m=0,1 г происходят согласно уравнению  $x=A\cos\omega t$ , где A=5 см;  $\omega=20$  с<sup>-1</sup>. Определить максимальные значения возвращающей силы  $F_{\rm max}$  и кинетической энергии  $T_{\rm max}$ .
- 6.104. Найти возвращающую силу F в момент t=1 с и полную энергию E материальной точки, совершающей колебания по закону  $x=A\cos\omega t$ , где A=20 см;  $\omega=2\pi/3$  с<sup>-1</sup>. Масса m материальной точки равна 10 г.
- 6.105. Колебания материальной точки происходят согласно уравнению  $x = A\cos\omega t$ , где A = 8 см,  $\omega = \pi/6$  с<sup>-1</sup>. В момент, когда возвращающая сила F в первый раз достигла значения —5 мH, потенциальная энергия  $\Pi$  точки стала равной 100 мкДж. Найти этот момент времени t и соответствующую ему фазу  $\omega t$ .
- 6.106. Уравнение колебания материальной точки массой  $m=1,6\cdot 10^{-2}$  кг имеет вид  $x=0,1\sin\left(\frac{\pi}{8}t+\frac{\pi}{4}\right)$  м. Построить график зависимости от времени t (в пределах одного периода) силы F, действующей на точку. Найти значение максимальной силы.
- 6.107. Уравнение колебаний материальной точки массой 10 г имеет вид  $x = 5 \sin\left(\frac{\pi}{5}t + \frac{\pi}{4}\right)$  см. Найти максимальную силу, действующую на точку, и полную энергию колеблющейся точки.

- 6.108. Уравнение колебания материальной точки массой 16 г имеет вид  $x = 2 \sin\left(\frac{\pi}{4}t + \frac{\pi}{4}\right)$  см. Построить график зависимости от времени (в пределах одного периода) кинетической, потенциальной и полной энергий точки.
- 6.109. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов времени t = T/12? Начальная фаза колебаний равна нулю.
- 6.110. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов времени t = T/8? Начальная фаза колебаний равна нулю.
- 6.111. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов времени t = T/6? Начальная фаза колебаний равна нулю.
- 6.112. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов, когда смещение точки от положения равновесия составляет x = A/4, где A амплитуда колебаний?
- 6.113. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов, когда смещение точки от положения равновесия составляет x = A/2, где A амплитуда колебаний?
- 6.114. Чему равно отношение кинетической энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии для моментов, когда смещение точки от положения равновесия составляет x = A, где A амплитуда колебаний?
- 6.115. Полная энергия тела, совершающего гармоническое колебательное движение, равна  $3 \cdot 10^{-5}$  Дж, максимальная сила, действующая на тело, равна  $1.5 \cdot 10^{-3}$  Н. Написать уравнение движения эгого тела, если период колебаний 2 с и начальная фаза  $60^{\circ}$ .
- 6.116. Амплитуда гармонических колебаний материальной точки A=2 см, полная энергия колебаний  $W=3\cdot 10^{-7}$  Дж. При каком смещении от положения равновесия на колеблющуюся точку действует сила  $F=2,25\cdot 10^{-5}$  H?
- 6.117. Тело массой m=10 г совершает гармонические колебания по закону  $x=0.1\cos\left(4\pi t+\frac{\pi}{4}\right)$  м. Определить максимальные значения: 1) возвращающей силы; 2) кинетической энергии.

- 6.118. Материальная точка массой m=50 г совершает гармонические колебания согласно уравнению  $x=0.1\cos\frac{3\pi}{2}t$  м. Определить: 1) возвращающую силу F для момента времени t=0.5 с; 2) полную энергию E точки.
- 6.119. Материальная точка массой m=20 г совершает гармонические колебания по закону  $x=0.1\cos\left(4\pi t+\frac{\pi}{4}\right)$  м. Определить полную энергию E этой точки.
- 6.120. Полная энергия E гармонически колеблющейся точки равна 10 мкДж, а максимальная сила  $F_{\text{max}}$ , действующая на точку, равна -0,5 мН. Написать уравнение движения этой точки, если период T колебаний равен 4 с, а начальная фаза  $\varphi = \pi/6$ .
- 6.121. Определить отношение кинетической энергии T точки, совершающей гармонические колебания, к ее потенциальной энергии  $\Pi$ , если известна фаза колебания.
- 6.122. Определить полную энергию материальной точки массой m, колеблющейся по закону  $x = A \cos(\omega_0 t + \varphi)$ .
- 6.123. Записать уравнение гармонических колебаний при следующих параметрах:  $A = 5.0 \cdot 10^{-2}$  м,  $\varphi_0 = 0$ , T = 0.01 с. Определить частоту колебаний, угловую скорость, амплитуды скорости и ускорения, полную энергию гармонических колебаний для тела массой m = 0.10 кг.
- 6.124. Тело массой 0,10 кг совершает гармонические колебания по закону  $x = 0,10\sin(314 \cdot t + \pi/2)$ . Определить амплитуду смещения, начальную фазу, частоту колебаний, период колебаний, амплитуды скорости и ускорения, максимальную кинетическую энергию.
- 6.125. Скорость тела, совершающего гармонические колебания, изменяется по закону  $v = 0.060 \sin 100t$ . Записать уравнение гармонических колебаний. Определить максимальные значения скорости и ускорения колеблющегося тела, энергию гармонических колебаний для тела массой  $0.20 \ \mathrm{kr}$ .
- 6.126. По уравнению движения  $x = 0.20 \sin \pi t$  определить смещение материальной точки через 1,5 с от начала колебаний, путь, пройденный ею за это время, возвращающую силу, действующую в этот момент времени. Масса материальной точки равна 0.20 кг.
- 6.127. По уравнению движения  $x = 0.20 \sin \pi t$  определить смещение точки, ее ускорение, возвращающую силу и потенциальную энергию через 1/6 с от момента возникновения колебаний. Масса материальной точки равна 0.20 кг.

- 6.128. На горизонтальной подставке, совершающей гармонические колебания в вертикальном направлении, лежит груз. При каком максимальном ускорении подставки груз еще не будет отрываться от ее поверхности? Какой будет при этом амплитуда колебаний, если период колебаний равен 0,5 с?
- 6.129. Горизонтальная доска совершает гармонические колебания в горизонтальном направлении с периодом 2,0 с. При какой амплитуде колебаний лежащее на ней тело начнет скользить? Коэффициент трения покоя равен 0,2.

#### Тема 4. Маятники

- 6.130. Грузик массой m=250 г, подвешенный к пружине, колеблется по вертикали с периодом T=1с. Определить жесткость  $\kappa$  пружины.
- 6.131. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на x = 9 см. Каков будет период T колебаний грузика, если его немного оттянуть вниз и затем отпустить?
- 6.132. Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой A=4 см. Определить полную энергию E колебаний гири, если жесткость  $\kappa$  пружины равна 1 кH/м.
- 6.133. Найти отношение длин двух математических маятников, если отношение периодов их колебаний равно 1,5.
- 6.134. Математический маятник длиной l=1 м установлен в лифте. Лифт поднимается с ускорением a=2,5 м/с². Определить период T колебаний маятника.
- 6.135. На концах тонкого стержня длиной l=30 см укреплены одинаковые грузики по одному на каждом конце. Стержень с грузиками колеблется около горизонтальной оси, проходящей через точку, удаленную на d=10 см от одного из концов стержня. Определить приведенную длину L и период T колебаний такого физического маятника. Массой стержня пренебречь.
- 6.136. На стержне длиной l=30 см укреплены два одинаковых грузика: один в середине стержня, другой на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период T колебаний такой системы. Массой стержня пренебречь.

6.137. Система из трех грузов, соединенных стержнями длиной l=30 см (рис. 1), колеблется относительно горизонтальной оси, проходящей через точку O перпендикулярно плоскости чертежа. Найти период T колебаний системы. Массами стержней пренебречь, грузы рассматривать как материальные точки.

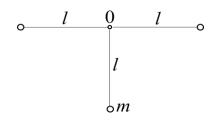
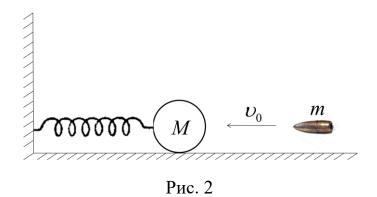




Рис. 1

- 6.138. Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период T колебаний обруча.
- 6.139. Шарик, подвешенный на нити длиной 2 м, отклоняют на угол 4° и наблюдают его колебания. Полагая колебания незатухающими гармоническими, найти скорость шарика при прохождении им положения равновесия. Проверить полученное решение, найдя скорость шарика при прохождении им положения равновесия из уравнений механики.
- 6.140. К пружине подвешен груз массой 10 кг. Зная, что пружина под влиянием силы 1 кгс растягивается на 1,5 см, определить период вертикальных колебаний груза.
- 6.141. К пружине подвешен груз. Зная, что максимальная кинетическая энергия колебаний груза равна 1 Дж, найти коэффициент упругости пружины. Амплитуда колебаний 5 см.
- 6.142. Как изменится период вертикальных колебаний груза, висящего на двух одинаковых пружинах, если от последовательного соединения пружин перейти к параллельному их соединению?
- 6.143. Медный шарик, подвешенный к пружине, совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый такого же радиуса?
- 6.144. К пружине подвешена чашка весов с гирями. При этом период вертикальных колебаний равен 0,5 с. После того как на чашку весов положили еще добавочные гири, период вертикальных колебаний стал равен

- 0,6 с. На сколько удлинилась пружина от прибавления этого добавочного груза?
- 6.145. К резиновому шнуру длиной 40 см и радиусом 1 мм подвешена гиря массой 0,5 кг. Зная, что модуль Юнга резины равен 0,3 кгс/мм<sup>2</sup>, найти период вертикальных колебаний гири. У к а з а н и е . Учесть, что коэффициент упругости k резины связан с модулем Юнга E резины соотношением k = SE/l, где S площадь поперечного сечения резины и l ее длина.
- 6.146. Ареометр массой m=0,2 кг плавает в жидкости. Если погрузить его немного в жидкость и отпустить, то он начнет совершать колебания с периодом T=3,4 с. Считая колебания незатухающими, найти по данным этого опыта плотность жидкости  $\rho$ , в которой плавает ареометр. Диаметр вертикальной цилиндрической трубки ареометра d=1 см.
- 6.147. Груз, подвешенный к спиральной пружине, колеблется по вертикали с амплитудой A=6 см. Определить полную энергию E колебаний груза, если жесткость k пружины составляет 500 H/м.
- 6.148. Спиральная пружина обладает жесткостью k = 25 Н/м. Определить, тело какой массой m должно быть подвешено к пружине, чтобы за t = 1 мин совершалось 25 колебаний.
- 6.149. Если увеличить массу груза, подвешенного к спиральной пружине, на 600 г, то период колебаний груза возрастает в 2 раза. Определить массу первоначально подвешенного груза.
- 6.150. При подвешивании грузов массами  $m_1 = 600$  г и  $m_2 = 400$  г к свободным пружинам последние удлинились одинаково (l = 10см). Пренебрегая массой пружин, определить: 1) периоды колебаний грузов; 2) какой из грузов при одинаковых амплитудах обладает большей энергией и во сколько раз.
- 6.151. На горизонтальной пружине жесткостью k = 800 Н/м укреплен шар массой M = 4 кг, лежащий на гладком столе, по которому он может скользить без трения (рис. 2). Пуля массой m = 10 г, летящая с горизонтальной скоростью  $v_0 = 600$ м/с и имеющая в момент удара скорость направленную вдоль оси пружины, попала в шар и застряла в нем. Пренебрегая массой пружины и сопротивлением воздуха, определить: 1) амплитуду колебаний шара; 2) период колебаний шара.



6.152. На чашку весов массой M (рис. 3), подвешенную на пружине с жесткостью k, с высоты h падает небольшой груз массой m. Удар груза о дно чашки является абсолютно неупругим. Чашка в результате падения груза начинает совершать колебания. Определить амплитуду A этих колебаний.

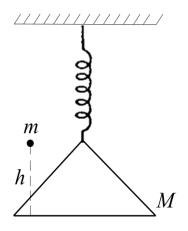
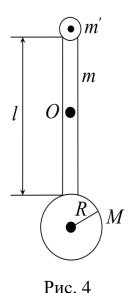




Рис. 3

- 6.153. Физический маятник представляет собой тонкий однородный стержень длиной 35 см. Определить, на каком расстоянии от центра масс должна быть точка подвеса, чтобы частота колебаний была максимальной.
- 6.154. Однородный диск радиусом R=20 см колеблется около горизонтальной оси, проходящей на расстоянии l=15 см от центра диска. Определить период T колебаний диска относительно этой оси.
- 6.155. Тонкий обруч радиусом R = 50 см подвешен на вбитый в стену гвоздь и колеблется в плоскости, параллельной стене. Определить период T колебаний обруча.
- 6.156. Тонкий однородный стержень длиной l=60 см может свободно вращаться вокруг горизонтальной оси, проходящей через верхний конец

стержня. Стержень отклонили на угол  $\alpha_0 = 0.01$  рад и в момент времени  $t_0 = 0$  отпустили. Считая колебания малыми, определить период колебаний стержня и записать функцию  $\alpha(t)$ .

- 6.157. Тонкий однородный стержень длиной l = 60 см может свободно вращаться вокруг горизонтальной оси, отстоящей на расстоянии x = 15 см от его середины. Определить период колебаний стержня, если он совершает малые колебания.
- 6.158. Маятник состоит из стержня (l=30 см, m=50 г), на верхнем конце которого укреплен маленький шарик (материальная точка массой m'=40 г), на нижнем шарик (R=5 см, M=100 г). Определить период колебания этого маятника около горизонтальной оси, проходящей через точку O в центре стержня (рис. 4).



6.159. Математический маятник, состоящий из нити длиной l=1 м и свинцового шарика радиусом r=2 см, совершает гармонические колебания с амплитудой A=6 см. Определить: 1) скорость шарика при прохождении им положения равновесия; 2) максимальное значение возвращающей силы. Плотность свинца  $\rho=11,3$  г/см<sup>3</sup>.

6.160. Два математических маятника имеют одинаковые массы, длины, отличающиеся в n=1,5 раза, и колеблются с одинаковыми угловыми амплитудами. Определить, какой из маятников обладает большей энергией и во сколько раз.

- 6.161. Два математических маятника, длины которых отличаются на  $\Delta l = 16$  см, совершают за одно и то же время один  $n_1 = 10$  колебаний, другой  $-n_2 = 6$  колебаний. Определить длины маятников  $l_1$  и  $l_1$ .
- 6.162. Математический маятник длиной l=50 см подвешен в кабине самолета. Определить период T колебаний маятника, если самолет движется равномерно.
- 6.163. Математический маятник длиной l = 50 см подвешен в кабине самолета. Определить период T колебаний маятника, если самолет движется горизонтально с ускорением a = 2.5 м/с<sup>2</sup>.
- 6.164. Математический маятник длиной l=1 м подвешен к потолку кабины, которая начинает опускаться вертикально вниз с ускорением  $a_1=g/4$ . Спустя время  $t_1=3$  с после начала движения кабина начинает двигаться равномерно, а затем в течение 3 с тормозится до остановки. Определить: 1) периоды  $T_1$ ,  $T_2$ ,  $T_3$  гармонических колебаний маятника на каждом из участков пути; 2) период  $T_4$  гармонических колебаний маятника при движении точки подвеса в горизонтальном направлении с ускорением  $a_4=g/4$ .
- 6.165. Цилиндр массой m, с площадью основания S свободно плавает в жидкости плотностью  $\rho$ . Его погрузили глубже и отпустили. Определить период гармонических колебаний цилиндра. Сопротивлением среды пренебречь.
- 6.166. В двух вертикальных сообщающихся сосудах находится жидкость массой m. Выведенная из положения равновесия, жидкость совершает колебательное движение. Плотность жидкости равна  $\rho$ , площадь поперечного сечения каждого сосуда равна S. Определить период колебаний жидкости.
- 6.167. Висящий на пружине груз массой 0,10 кг совершает вертикальные колебания с амплитудой 4,0 см. Определить период гармонических колебаний груза, если для упругого удлинения пружины на 1,0 см требуется сила 0,10 Н. Найти энергию гармонических колебаний маятника. Массой пружины пренебречь.
- 6.168. Груз, лежащий на гладкой неподвижной горизонтальной поверхности, прикреплен к пружине. Другой конец пружины закреплен. Груз тянут по поверхности с силой F и затем отпускают. Написать уравнение колебаний груза, считая их гармоническими. Определить энергию этих колебаний. Как изменится период колебаний, если всю систему перенести на Луну? Масса груза равна m, сила F = mg, жесткость пружины равна k. Массой пружины пренебречь.

- 6.169. Груз массой 0,20 кг, подвешенный к пружине, совершает 30 колебаний за 1 мин с амплитудой 0,10 м. Определить кинетическую энергию груза через 1/6 периода после момента прохождения грузом положения равновесия, а также жесткость пружины.
- 6.170. Груз массой m подвешивают к двум невесомым пружинам, жесткость которых равна  $k_1$  и  $k_2$ . Определить период гармонических колебаний груза при последовательном соединении пружин; при параллельном соединении пружин, если груз подвешен посредине между ними на невесомом стержне.
- 6.171. Математический маятник длиной 99,5 см за 1 мин совершает 30 полных колебаний. Определить период колебания маятника и ускорение свободного падения в том месте, где находится маятник.
- 6.172. Определить период гармонических колебаний математического маятника длиной 1,0 м, если ускорение свободного падения равно 9,81 м/с<sup>2</sup>. Во сколько раз и как надо изменить длину маятника, чтобы период колебаний увеличился в два раза?
- 6.173. Определить длину математического маятника, совершающего одно полное колебание за 2 с, если ускорение свободного падения равно 9,81 м/с<sup>2</sup>. Во сколько раз нужно изменить длину маятника, чтобы частота его колебаний увеличилась в два раза?
- 6.174. Как относятся длины двух математических маятников, если за одно и то же время первый маятник совершил 10 колебаний, а второй 20 колебаний?
- 6.175. Во сколько раз период колебаний математического маятника на Луне отличается от периода колебаний того же маятника на Земле ( $g_{\pi} \approx g_{3}/6$ )?
- 6.176. К потолку подвешены два математических маятника. За одинаковый промежуток времени один маятник совершил 5 колебаний, а другой 3 колебания. Какова длина каждого маятника, если разность их длин равна 48 см?
- 6.177. Во сколько раз и как отличается период гармонических колебаний математического маятника на планете, масса и радиус которой в четыре раза больше, чем у Земли, от периода колебаний такого же маятника на Земле?
- 6.178. На сколько отстанут часы с маятником за сутки, если их с полюса перенести на экватор? Считать, что на полюсе часы шли правильно ( $g_{\pi} \approx 9,83$  м/с²,  $g_{_{3KB}} \approx 9,78$  м/с²).

6.179. Часы с маятником точно идут на уровне моря. На сколько будут отставать часы за сутки, если их поднять на высоту h = 4.0 км? Радиус Земли  $R_3 \approx 6.4 \cdot 10^3$  км.

#### Тема 5. Затухающие колебания

- 6.180. Амплитуда затухающих колебаний маятника за время  $t_1 = 5$  мин уменьшилась в два раза. За какое время  $t_2$ , считая от начального момента, амплитуда уменьшится в восемь раз?
- 6.181. За время t = 8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания  $\delta$ .
- 6.182. Амплитуда колебаний маятника длиной l=1 м за время t=10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний  $\theta$ .
- 6.183. Логарифмический декремент колебаний  $\theta$  маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза.
- 6.184. Гиря массой m = 500 г подвешена к спиральной пружине жесткостью  $\kappa = 20$  Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний  $\theta = 0,004$ . Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n = 2 раза. За какое время t произойдет это уменьшение?
- 6.185. Тело массой m=5 г совершает затухающие колебания. В течение времени t=50 с тело потеряло 60% своей энергии. Определить коэффициент сопротивления b.
- 6.186. Определить период T затухающих колебаний, если период  $T_0$  собственных колебаний системы равен 1 с и логарифмический декремент колебаний  $\theta = 0.628$ .
- 6.187. Найти число N полных колебаний системы, в течение которых энергия системы уменьшилась в n=2 раза. Логарифмический декремент колебаний  $\theta=0.01$ .
- 6.188. Тело массой m=1 кг находится в вязкой среде. Коэффициент сопротивления среды для данного тела r=0.05 кг/с. С помощью двух

одинаковых пружин жесткостью  $\kappa = 50$  H/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 5). Тело сместили от положения равновесия и отпустили. Определить коэффициент затухания  $\delta$ .

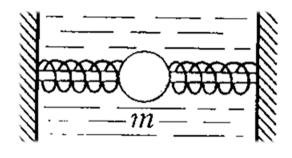



Рис. 5

6.189. Тело массой m=1 кг находится в вязкой среде. Коэффициент сопротивления среды для данного тела r=0.05 кг/с. С помощью двух одинаковых пружин жесткостью  $\kappa=50$  Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 5). Тело сместили от положения равновесия и отпустили. Определить частоту  $\nu$  колебаний.

6.190. Тело массой m=1 кг находится в вязкой среде. Коэффициент сопротивления среды для данного тела r=0.05 кг/с. С помощью двух одинаковых пружин жесткостью  $\kappa=50$  Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 5). Тело сместили от положения равновесия и отпустили. Определить логарифмический декремент колебаний  $\theta$ .

6.191. Тело массой m=1 кг находится в вязкой среде. Коэффициент сопротивления среды для данного тела r=0.05 кг/с. С помощью двух одинаковых пружин жесткостью  $\kappa=50$  Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 5). Тело сместили от положения равновесия и отпустили. Определить число N колебаний, по прошествии которых амплитуда уменьшится в e раз.

6.192. Период затухающих колебаний 4 с, логарифмический декремент затухания 1,6, начальная фаза равна нулю. Смещение точки при t = T/4 равно 4,5 см. 1) Написать уравнение движения этого колебания. 2) Построить график этого колебательного движения в пределах двух периодов.

6.193. Построить график затухающего колебания, уравнение которого дано в виде  $x=e^{-0.1t}\sin\frac{\pi}{4}t$  м.

- 6.194. Уравнение затухающих колебаний дано в виде  $x = 5e^{-0.25t} \sin \frac{\pi}{2} t$  м. Найти скорость колеблющейся точки в момент времени t = 0.
- 6.195. Уравнение затухающих колебаний дано в виде  $x = 5e^{-0.25t} \sin \frac{\pi}{2} t$  м. Найти скорость колеблющейся точки в момент времени t = T.
- 6.196. Уравнение затухающих колебаний дано в виде  $x = 5e^{-0.25t} \sin \frac{\pi}{2} t$  м. Найти скорость колеблющейся точки в момент времени t = 2T.
- 6.197. Уравнение затухающих колебаний дано в виде  $x = 5e^{-0.25t} \sin \frac{\pi}{2} t$  м. Найти скорость колеблющейся точки в момент времени t = 3T.
- 6.198. Уравнение затухающих колебаний дано в виде  $x = 5e^{-0.25t} \sin \frac{\pi}{2} t$  м. Найти скорость колеблющейся точки в момент времени t = 4T.
- 6.199. Логарифмический декремент затухания математического маятника равен 0,2. Найти, во сколько раз уменьшается амплитуда колебаний за одно полное колебание маятника.
- 6.200. Чему равен логарифмический декремент затухания математического маятника, если за 1 мин амплитуда колебаний уменьшилась в два раза? Длина маятника 1 м.
- 6.201. Математический маятник длиной 24,7 см совершает затухающие колебания. Через сколько времени энергия колебаний маятника уменьшится в 9,4 раза? Задачу решить при значении логарифмического декремента затухания  $\varkappa=0,01$ .
- 6.202. Математический маятник длиной 24,7 см совершает затухающие колебания. Через сколько времени энергия колебаний маятника уменьшится в 9,4 раза? Задачу решить при значении логарифмического декремента затухания  $\varkappa=1$ .
- 6.203. Математический маятник совершает затухающие колебания с логарифмическим декрементом затухания 0,2. Во сколько раз уменьшится полное ускорение маятника в его крайнем положении за одно колебание?
- 6.204. Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась вдвое. Во сколько раз она уменьшится за 3 мин?
- 6.205. Математический маятник длиной 0,5 м, выведенный из положения равновесия, отклонился при первом колебании на 5 см, а при втором (в ту же сторону) на 4 см. Найти время релаксации, т. е. время, в течение которого

- амплитуда колебаний уменьшится в e раз, где e основание натуральных логарифмов.
- 6.206. К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на 9,8 см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Чему должен быть равен коэффициент затухания  $\delta$ , чтобы колебания прекратились через 10 с (считать условно, что колебания прекратились, если их амплитуда упала до 1% от начальной величины)?
- 6.207. К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на 9,8 см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Чему должен быть равен коэффициент затухания  $\delta$ , чтобы груз возвращался в положение равновесия апериодически?
- 6.208. К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на 9,8 см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Чему должен быть равен коэффициент затухания  $\delta$ , чтобы логарифмический декремент затухания был равен 6?
- 6.209. Период затухающих колебаний T=1 с, логарифмический декремент затухания  $\theta=0,3$ , начальная фаза равна нулю. Смещение точки при t=2 T составляет 5 см. Записать уравнение движения этого колебания.
- 6.210. Доказать, что для затухающих колебаний, описываемых уравнением  $x(t) = A_0 e^{-\delta t} \cos \omega t$ , выполняется условие  $x(t+T) = x(t)e^{-\delta T}$ .
- 6.211. Амплитуда затухающих колебаний маятника за t=2 мин уменьшилась в 2 раза. Определить коэффициент затухания  $\delta$ .
- 6.212. Логарифмический декремент колебаний  $\theta$  маятника равен 0.01. Определить число N полных колебаний маятника до уменьшения его амплитуды в 3 раза.
- 6.213. Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась в 3 раза. Определить, во сколько раз она уменьшится за 4 мин.
- 6.214. Начальная амплитуда затухающих колебаний маятника  $A_0 = 3$  см. По истечении  $t_1 = 10$  с  $A_1 = 1$  см. Определить, через сколько времени амплитуда колебаний станет равной  $A_2 = 0.3$  см.
- 6.215. Тело массой m=0.6 кг, подвешенное к спиральной пружине жесткостью k=30 H/м, совершает в некоторой среде упругие колебания.

- Логарифмический декремент колебаний  $\theta = 0.01$ . Определить время t, за которое амплитуда колебаний уменьшится в 3 раза.
- 6.216. Тело массой m=0.6 кг, подвешенное к спиральной пружине жесткостью k=30 H/м, совершает в некоторой среде упругие колебания. Логарифмический декремент колебаний  $\theta=0.01$ . Определить число N полных колебаний, которые должна совершить гиря, чтобы произошло подобное уменьшение амплитуды.
- 6.217. При наблюдении затухающих колебаний выяснилось, что для двух последовательных колебаний амплитуда второго меньше амплитуды первого на 60%. Период затухающих колебаний T = 0.5 с. Определить: 1) коэффициент затухания  $\delta$ ; 2) для тех же условий частоту  $v_0$  незатухающих колебаний.
- 6.218. Тело массой m = 100 г, совершая затухающие колебания, за  $\tau = 1$  мин потеряло 40 % своей энергии. Определить коэффициент сопротивления r.
- 6.219. Затухающие колебания точки происходят по закону  $x = a_0 e^{-\beta t} \sin \omega t$ . Найти: а) амплитуду смещения и скорость точки в момент t = 0; б) моменты времени, когда точка достигает крайних положений.
- 6.220. Осциллятор со временем релаксации  $\tau = 20$  с в момент t = 0 имеет начальное смещение  $x_0 = 10$  см. При каком значении начальной скорости  $x_0$  это смещение окажется равным своей амплитуде?
- 6.221. Точка совершает затухающие колебания с частотой  $\omega = 25$  с<sup>-1</sup>. Найти коэффициент затухания  $\beta$ , если в начальный момент скорость точки равна нулю, а ее смещение из положения равновесия в  $\eta = 1,020$  раза меньше амплитуды.
- 6.222. Математический маятник совершает колебания в среде, для которой логарифмический декремент затухания  $\lambda_0 = 1,50$ . Каким будет значение  $\lambda$ , если сопротивление среды увеличить в n = 2,00 раза? Во сколько раз следует увеличить сопротивление среды, чтобы колебания стали невозможны?
- 6.223. К невесомой пружине подвесили грузик, и она растянулась на  $\Delta x = 9.8$  см. С каким периодом будет колебаться грузик, если ему дать небольшой толчок в вертикальном направлении? Логарифмический декремент затухания  $\lambda = 3.1$ .
- 6.224. Найти добротность осциллятора, у которого амплитуда смещения уменьшается в  $\eta = 2.0$  раза через каждые n = 110 периодов колебаний.

- 6.225. Найти добротность осциллятора, у которого собственная частота  $\omega_0 = 100 \, \mathrm{c}^{-1}$  и время релаксации  $\tau = 60 \, \mathrm{c}$ .
- 6.226. Частицу сместили из положения равновесия на расстояние l=1,0 см и предоставили самой себе. Какой путь пройдет, колеблясь, эта частица до полной остановки, если логарифмический декремент затухания  $\lambda=0,020$ ?
- 6.227. Найти добротность математического маятника длины l=50 см, если за промежуток времени  $\tau=5,2$  мин его полная механическая энергия уменьшилась в  $\eta=4,0\cdot 10^4$  раз.

## Тема 6. Вынужденные колебания. Резонанс

- 6.228. Под действием силы тяжести электродвигателя консольная балка, на которой он установлен, прогнулась на h = 1 мм. При какой частоте вращения n якоря электродвигателя может возникнуть опасность резонанса?
- 6.229. Вагон массой m=80 т имеет четыре рессоры. Жесткость  $\kappa$  пружин каждой рессоры равна 500 кН/м. При какой скорости  $\upsilon$  вагон начнет сильно раскачиваться вследствие толчков на стыках рельс, если длина l рельса равна 12,8 м?
- 6.230. Колебательная система совершает затухающие колебания с частотой  $\nu$  = 1000 Гц. Определить частоту  $\nu_0$  собственных колебаний, если резонансная частота;  $\nu_{\text{pes}}$  = 998 Гц.
- 6.231. Определить, на сколько резонансная частота отличается от частоты  $\nu_0$  = 1 кГц собственных колебаний системы, характеризуемой коэффициентом затухания  $\delta = 400 \text{ c}^{-1}$ .
- 6.232. Определить логарифмический декремент колебаний  $\theta$  колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты  $\nu_0 = 10$  к $\Gamma$ ц на  $\Delta \nu = 2$   $\Gamma$ ц.
- 6.233. Период  $T_0$  собственных колебаний пружинного маятника равен 0,55 с. В вязкой среде период T того же маятника стал равным 0,56 с. Определить резонансную частоту  $\nu_{\text{рез}}$  колебаний.
- 6.234. Пружинный маятник (жесткость  $\kappa$  пружины равна 10 H/м, масса m груза равна 100 г) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления  $r=2\cdot 10^{-2}$  кг/с. Определить коэффициент

- затухания  $\delta$  и резонансную амплитуду  $\nu_{\text{peз}}$ , если амплитудное значение вынуждающей силы  $F_0 = 10$  мH.
- 6.235. Тело совершает вынужденные колебания в среде с коэффициентом сопротивления r = 1 г/с. Считая затухание малым, определить амплитудное значение вынуждающей силы, если резонансная амплитуда  $A_{pe3} = 0.5$  см и частота  $\nu_0$  собственных колебаний равна 10 Гц.
- 6.236. Амплитуды вынужденных гармонических колебаний при частоте  $\nu_1 = 400 \, \Gamma$ ц и  $\nu_2 = 600 \, \Gamma$ ц равны между собой. Определить резонансную частоту  $\nu_{\text{pes}}$ . Затуханием пренебречь.
- 6.237. К спиральной пружине жесткостью  $\kappa = 10$  Н/м подвесили грузик массой m = 10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления r равным 0,1 кг/с, определить: 1) частоту  $\nu_0$  собственных колебаний; 2) резонансную частоту  $\nu_{\text{рез}}$ ; 3) резонансную амплитуду  $A_{\text{рез}}$ , если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение  $F_0 = 0.02$  H; 4) отношение резонансной амплитуды к статическому смещению под действием силы  $F_0$ .
- 6.238. Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты на 10%? Коэффициент затухания  $\delta$  в обоих случаях принять равным  $0.1\omega_0$  ( $\omega_0$  угловая частота собственных колебаний).
- 6.239. Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты в два раза? Коэффициент затухания  $\delta$  в обоих случаях принять равным  $0.1\omega_0$  ( $\omega_0$  угловая частота собственных колебаний).
- 6.240. Тело массой m=10 г совершает затухающие колебания с максимальной амплитудой 7 см, начальной фазой, равной нулю, и коэффициентом затухания 1,6 с<sup>-1</sup>. На это тело начала действовать внешняя периодическая сила, под действием которой установились вынужденные колебания. Уравнение вынужденных колебаний имеет вид  $x=5\sin(10\pi t-0.75\pi)$  см. Найти (с числовыми коэффициентами): 1) уравнение собственных колебаний, 2) уравнение внешней периодической силы.
- 6.241. Гиря массой 0.2 кг, висящая на вертикальной пружине, совершает затухающие колебания с коэффициентом затухания 0.75 с<sup>-1</sup>. Коэффициент упругости пружины 0.5 кгс/см. Начертить зависимость амплитуды A вынужденных колебаний гирьки от частоты со внешней периодической силы,

- если известно, что наибольшее значение внешней силы равно 0,98 Н. Для построения графика найти значения A для следующих частот:  $\omega=0,\ \omega=0,5\omega_0,\ \omega=0,75\omega_0,\ \omega=\omega_0,\ \omega=1,5\omega_0$  и  $\omega=2\omega_0,\ \text{где}\ \omega_0$  частота собственных колебаний подвешенной гири.
- 6.242. По грунтовой дороге прошел трактор, оставив следы в виде ряда углублений, находящихся на расстоянии 30 см друг от друга. По этой дороге покатили детскую коляску, имеющую две одинаковые рессоры, каждая из которых прогибается на 2 см под действием груза массой 1 кг. С какой скоростью катили коляску, если от толчков на углублениях она, попав в резонанс, начала сильно раскачиваться? Масса коляски 10 кг.
- 6.243. Определить резонансную частоту колебательной системы, если собственная частота колебаний  $v_0 = 300 \, \Gamma$ ц, а логарифмический декремент  $\theta = 0.2$ .
- 6.244. Собственная частота  $v_0$  колебаний некоторой системы составляет 500 Гц. Определить частоту v затухающих колебаний этой системы, если резонансная частота  $v_{\text{pes}} = 499$  Гц.
- 6.245. Период затухающих колебаний системы составляет 0,2 с, а отношение амплитуд первого и шестого колебаний равно 13. Определить резонансную частоту данной колебательной системы.
- 6.246. Гиря массой m=0.5 кг, подвешенная на спиральной пружине жесткостью k=50 Н/м, совершает колебания в вязкой среде с коэффициентом сопротивления r=0.5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону  $F=0.1\cos\omega t$  Н. Определить для данной колебательной системы: 1) коэффициент затухания  $\delta$ ; 2) резонансную амплитуду  $A_{pe3}$ .
- 6.247. Гиря массой m=400 г, подвешенная на спиральной пружине жесткостью k=40 Н/м, опущена в масло. Коэффициент сопротивления r для этой системы составляет 0,5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону  $F=\cos\omega t$  Н. Определить амплитуду вынужденных колебаний, если частота вынуждающей силы вдвое меньше собственной частоты колебаний.
- 6.248. Гиря массой m=400 г, подвешенная на спиральной пружине жесткостью k=40 Н/м, опущена в масло. Коэффициент сопротивления r для этой системы составляет 0,5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону  $F=\cos\omega t$  Н. Определить частоту вынуждающей силы, при которой амплитуда вынужденных колебаний максимальна.

- 6.249. Гиря массой m=400 г, подвешенная на спиральной пружине жесткостью k=40 Н/м, опущена в масло. Коэффициент сопротивления r для этой системы составляет 0,5 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону  $F=\cos\omega t$  Н. Определить резонансную амплитуду.
- 6.250. Гиря массой m=20 г, подвешенная на спиральной пружине жесткостью k=50 Н/м, совершает колебания в вязкой среде с коэффициентом сопротивления r=0,2 кг/с. На верхний конец пружины действует вынуждающая сила, изменяющаяся по закону  $F=0,2\cos\omega t$  Н. Определить: 1) частоту  $v_0$  собственных колебаний; 2) резонансную частоту  $v_{\text{pe3}}$ ; 3) резонансную амплитуду  $A_{\text{pe3}}$ ; 4) статическое отклонение.
- 6.251. Шарик массы m может совершать незатухающие гармонические колебания около точки x=0 с собственной частотой  $\omega_0$ . В момент t=0, когда шарик находился в состоянии равновесия, к нему приложили вынуждающую силу  $F_x = F_0 \cos \omega t$ , совпадающую по направлению с осью x. Найти закон вынужденных колебаний шарика x(t).
- 6.252. Шарик массы m, подвешенный к пружинке, удлиняет ее на  $\Delta l$ . Под действием внешней вертикальной силы, меняющейся по гармоническому закону с амплитудой  $F_0$ , шарик совершает вынужденные колебания. Логарифмический декремент затухания  $\lambda$ . Пренебрегая массой пружинки, найти частоту  $\omega$  вынуждающей силы, при которой амплитуда a смещения шарика максимальна. Каково значение этой амплитуды?
- 6.253. Найти максимальное значение амплитуды смещения осциллятора, совершающего установившиеся колебания под действием вынуждающей гармонической силы с амплитудой  $F_0 = 2,50$  H, если частота затухающих колебаний данного осциллятора  $\omega = 100$  с<sup>-1</sup> и коэффициент сопротивления (коэффициент пропорциональности между силой сопротивления и скоростью) r = 0,50 кг/с.
- 6.254. Амплитуды смещений вынужденных гармонических колебаний при частотах  $\omega_1 = 400 \, \text{c}^{-1}$  и  $\omega_2 = 600 \, \text{c}^{-1}$  равны между собой. Найти частоту  $\omega$ , при которой амплитуда смещения максимальна.
- 6.255. При частотах вынуждающей гармонической силы  $\omega_1$  и  $\omega_2$  амплитуда скорости частицы равна половине максимального значения. Найти частоту, соответствующую резонансу скорости.
- 6.256. При частотах вынуждающей гармонической силы  $\omega_1$  и  $\omega_2$  амплитуда скорости частицы равна половине максимального значения. Найти коэффициент затухания  $\beta$  и частоту  $\omega$  затухающих колебаний.

## Тема 7. Волны в упругой среде. Уравнение плоской волны

- 6.257. Задано уравнение плоской волны  $\xi(x,t) = A\cos(\omega t kx)$ , где A = 0.5 см,  $\omega = 628$  с<sup>-1</sup>,  $\kappa = 2$  м<sup>-1</sup>. Определить: 1) частоту колебаний  $\nu$  и длину волны  $\lambda$ ; 2) фазовую скорость  $\nu$ ; 3) максимальные значения скорости  $\dot{\xi}_{\text{max}}$  и ускорения  $\ddot{\xi}_{\text{max}}$  колебаний частиц среды.
- 6.258. Показать, что выражение  $\xi(x,t) = A\cos(\omega t kx)$  удовлетворяет волновому уравнению  $\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$  при условии, что  $\omega = kv$ .
- 6.259. Плоская звуковая волна возбуждается источником колебаний частоты  $\nu=200\,$  Гц. Амплитуда A колебаний источника равна 4 мм. Написать уравнение колебаний источника  $\xi(0,t)$ , если в начальный момент смещение точек источника максимально. Найти смещение  $\xi(x,t)$  точек среды, находящихся на расстоянии  $x=100\,$  см от источника, в момент  $t=0,1\,$  с. Скорость  $\nu$  звуковой волны принять равной  $300\,$  м/с. Затуханием пренебречь.
- 6.260. Звуковые колебания, имеющие частоту  $\nu=0.5$  к $\Gamma$ ц и амплитуду A=0.25 мм, распространяются в упругой среде. Длина волны  $\lambda=70$  см. Найти: 1) скорость  $\nu$  распространения волн; 2) максимальную скорость  $\xi_{\rm max}$  частиц среды.
- 6.261. Плоская звуковая волна имеет период T=3 мс, амплитуду A=0,2 мм и длину волны  $\lambda=1,2$  м. Для точек среды, удаленных от источника колебаний на расстояние x=2 м, найти: 1) смещение  $\xi(x,t)$  в момент t=7 мс; 2) скорость  $\dot{\xi}$  и ускорение  $\ddot{\xi}$  для того же момента времени. Начальную фазу колебаний принять равной нулю.
- 6.262. От источника колебаний распространяется волна вдоль прямой линии. Амплитуда A колебаний равна 10 см. Как велико смещение точки, удаленной от источника на  $x = 3/4\lambda$ , в момент, когда от начала колебаний прошло время t = 0.9T?
- 6.263. Волна с периодом T=1,2 с и амплитудой колебаний A=2 см распространяется со скоростью v=15 м/с. Чему равно смещение  $\xi(x,t)$  точки, находящейся на расстоянии x=45 м от источника волн, в тот момент, когда от начала колебаний источника прошло время t=4 с?
- 6.264. Две точки находятся на расстоянии  $\Delta x = 50$  см друг от друга на прямой, вдоль которой распространяется волна со скоростью v = 50 м/с.

- Период T колебаний равен 0,05 с. Найти разность фаз  $\Delta \varphi$  колебаний в этих точках.
- 6.265. Определить разность фаз  $\Delta \varphi$  колебаний источника волн, находящегося в упругой среде, и точки этой среды, отстоящей на x=2 м от источника. Частота  $\nu$  колебаний равна 5  $\Gamma$ ц; волны распространяются со скоростью  $\nu=40$  м/с.
- 6.266. Волна распространяется в упругой среде со скоростью v = 100 м/с. Наименьшее расстояние  $\Delta x$  между точками среды, фазы колебаний которых противоположны, равно 1 м. Определить частоту  $\nu$  колебаний.
- 6.267. Определить скорость v распространения волны в упругой среде, если разность  $\Delta \varphi$  колебаний двух точек среды, отстоящих друг от друга на  $\Delta x = 10$  см, равна  $\pi/3$ . Частота v колебаний равна 25  $\Gamma$ ц.
- 6.268. Найти длину волны колебания, период которого  $10^{-14}$  с. Скорость распространения колебаний  $3\cdot 10^8$  м/с.
- 6.269. Звуковые колебания, имеющие частоту  $\nu = 500$  Гц и амплитуду A = 0.25 мм, распространяются в воздухе. Длина волны  $\lambda = 70$  см. Найти: 1) скорость распространения колебаний, 2) максимальную скорость частиц воздуха.
- 6.270. Уравнение незатухающих колебаний дано в виде  $x=10 \sin 0.5 \pi t$  см. Найти уравнение волны, если скорость распространения колебаний 300 м/с.
- 6.271. Уравнение незатухающих колебаний дано в виде  $x = 10 \sin 0.5 \pi t$  см. Написать и изобразить графически уравнение колебания для точки, отстоящей на расстоянии 600 м от источника колебаний.
- 6.272. Уравнение незатухающих колебаний дано в виде  $x = 4 \sin 600 \pi t$  см. Найти смещение от положения равновесия точки, находящейся на расстоянии 75 см от источника колебаний, через 0,01 с после начала колебаний. Скорость распространения колебаний 300 м/с.
- 6.273. Уравнение незатухающих колебаний дано в виде  $x = \sin 2.5 \pi t$  см. Найти смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии 20 м от источника колебаний, для момента t=1с после начала колебаний. Скорость распространения колебаний 100 м/c.
- 6.274. Найти разность фаз колебаний двух точек, находящихся на расстоянии соответственно 10 и 16 м от источника колебаний. Период колебаний 0,04 с и скорость распространения 300 м/с.

- 6.275. Найти разность фаз колебаний двух точек, лежащих на луче и отстоящих на расстоянии 2 м друг от друга, если длина волны 1 м.
- 6.276. Найти смещение от положения равновесия точки, отстоящей от источника колебаний на расстоянии  $l = \lambda/12$ , для момента t = T/6. Амплитуда колебаний A = 0.05 м.
- 6.277. Смещение от положения равновесия точки, находящейся на расстоянии 4 см от источника колебаний, в момент t = T/6 равно половине амплитуды. Найти длину бегущей волны.
- 6.278. Найти положение узлов и пучностей и начертить график стоячей волны для двух случаев: 1) отражение происходит от менее плотной среды, 2) отражение происходит от более плотной среды. Длина бегущей волны 12 см.
- 6.279. Определить длину волны колебаний, если расстояние между первой и четвертой пучностями стоячей волны равно 15 см.
- 6.280. Определить разность фаз  $\Delta \varphi$  колебаний двух точек, лежащих на луче и друг от друга на расстоянии  $\Delta l = 1$  м, если длина волны  $\lambda = 0.5$  м.
- 6.281. Две точки лежат на луче и находятся от источника колебаний на расстояниях  $x_1 = 4$  м и  $x_2 = 7$  м. Период колебаний T = 20 мс и скорость v распространения волны равна 300 м/с. Определить разность фаз колебаний этих точек.
- 6.282. Волна распространяется в упругой среде со скоростью  $v=150\,\mathrm{m/c}$ . Определить частоту v колебаний, если минимальное расстояние  $\Delta x$  между точками среды, фазы колебаний которых противоположны, равно 0,75 м.
- 6.283. Определить длину волны  $\lambda$ , если числовое значение волнового вектора  $\kappa$  равно  $0.02512~{\rm cm}^{-1}$ .
- 6.284. Звуковые колебания с частотой v = 450 Гц и амплитудой A = 0.3 мм распространяются в упругой среде. Длина волны  $\lambda = 80$  см. Определить: 1) скорость распространения волн; 2) максимальную скорость частиц среды.
- 6.285. Плоская синусоидальная волна распространяется вдоль прямой, совпадающей с положительным направлением оси x в среде, не поглощающей энергию, со скоростью v=10 м/с. Две точки, находящиеся на этой прямой на расстояниях  $x_1=7$  м и  $x_2=10$  м от источника колебаний, колеблются с разностью фаз  $\Delta \varphi = 3\pi/5$ . Амплитуда волны A=5 см. Определить длину волны  $\lambda$ .

- 6.286. Плоская синусоидальная волна распространяется вдоль прямой, совпадающей с положительным направлением оси x в среде, не поглощающей энергию, со скоростью v=10 м/с. Две точки, находящиеся на этой прямой на расстояниях  $x_1=7$  м и  $x_2=10$  м от источника колебаний, колеблются с разностью фаз  $\Delta \varphi = 3\pi/5$ . Амплитуда волны A=5 см. Определить уравнение волны.
- 6.287. Плоская синусоидальная волна распространяется вдоль прямой, совпадающей с положительным направлением оси x в среде, не поглощающей энергию, со скоростью v=10 м/с. Две точки, находящиеся на этой прямой на расстояниях  $x_1=7$  м и  $x_2=10$  м от источника колебаний, колеблются с разностью фаз  $\Delta \varphi = 3\pi/5$ . Амплитуда волны A=5 см. Определить смещение  $\xi_2$  второй точки в момент времени t=2 с.
- 6.288. Поперечная волна распространяется вдоль упругого шнура со скоростью v=10 м/с. Амплитуда колебаний точек шнура A=5 см, а период колебаний T=1 с. Записать уравнение волны и определить: 1) длину волны; 2) фазу колебаний, смещение, скорость и ускорение точки, расположенной на расстоянии x=9 м от источника колебаний в момент времени t=2,5 с.
- 6.289. Определить разность числовых значений фазовой и групповой скоростей для частоты  $\nu = 800$  Гц, если фазовая скорость задается выражением  $v = a_0/\sqrt{\nu + b}$ , где  $a_0 = 24$  м/с, b = 100 Гц.
- 6.290. Два когерентных источника колеблются в одинаковых фазах с частотой v = 400 Гц. Скорость распространения колебаний в среде v = 1 км/с. Определить, при какой наименьшей разности хода будет наблюдаться: 1) максимальное усиление колебаний; 2) максимальное ослабление колебаний.
- 6.291. Два когерентных источника посылают поперечные волны в одинаковых фазах. Периоды колебаний T=0,2 с, скорость распространения волн в среде v=800 м/с. Определить, при какой разности хода в случае наложения волн будет наблюдаться: 1) ослабление колебаний; 2) усиление колебаний.
- 6.292. Два динамика расположены на расстоянии d=0.5 м друг от друга и воспроизводят один и тот же музыкальный тон на частоте v=1500 Гц. Приемник находится на расстоянии l=4 м от центра динамиков. Принимая скорость звука v=340 м/с, определить, на какое расстояние от центральной линии параллельно динамикам надо отодвинуть приемник, чтобы он зафиксировал первый интерференционный минимум.
- 6.293. Два динамика расположены на расстоянии d = 2,5 м друг от друга и воспроизводят один и тот же музыкальный тон на определенной частоте,

- который регистрируется приемником, находящимся на расстоянии  $l=3.5\,\mathrm{m}$  от центра динамиков. Если приемник передвинуть от центральной линии параллельно динамикам на расстояние  $x=1.55\,\mathrm{m}$ , то он фиксирует первый интерференционный минимум. Скорость звука  $v=340\,\mathrm{m/c}$ . Определить частоту звука.
- 6.294. Определить длину волны  $\lambda$ , если расстояние  $\Delta l$  между первым и четвертым узлами стоячей волны равно 30 см.
- 6.295. Микроволновой генератор излучает в положительном направлении оси x плоские электромагнитные волны, которые затем отражаются обратно. Точки  $M_1$  и  $M_2$  соответствуют положениям двух соседних минимумов интенсивности и отстоят друг от друга на расстоянии l=5 см. Определить частоту микроволнового генератора.
- 6.296. Один конец упругого стержня соединен с источником гармонических колебаний, подчиняющихся закону  $\xi = A \cos \omega t$ , а другой его конец жестко закреплен. Учитывая, что отражение в месте закрепления стержня происходит от менее плотной среды, определить характер колебаний в любой точке стержня.
- 6.297. Один конец упругого стержня соединен с источником гармонических колебаний, подчиняющихся закону  $\xi = A \cos \omega t$ , а другой его конец жестко закреплен. Учитывая, что отражение в месте закрепления стержня происходит от более плотной среды, определить характер колебаний в любой точке стержня.
- 6.298. Уравнение плоской звуковой волны имеет вид  $\xi = 60 \cos(1800t 5.3x)$ , где  $\xi$  в мкм, t в секундах, x в метрах. Найти отношение амплитуды смещения частиц среды к длине волны.
- 6.299. Уравнение плоской звуковой волны имеет вид  $\xi = 60 \cos(1800t 5.3x)$ , где  $\xi$  в мкм, t в секундах, x в метрах. Найти амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны.
- 6.300. Уравнение плоской звуковой волны имеет вид  $\xi = 60 \cos(1800t 5.3x)$ , где  $\xi$  в мкм, t в секундах, x в метрах. Найти амплитуду колебаний относительной деформации среды и ее связь с амплитудой колебаний скорости частиц среды.
- 6.301. В однородной упругой среде распространяется плоская волна  $\xi = a\cos(\omega t kx)$ . Изобразить для момента t = 0: а) графики зависимостей от x величин  $\xi$ ,  $\partial \xi/\partial t$  и  $\partial \xi/\partial x$ ; б) направление скорости частиц среды в точках,

- где  $\xi = 0$ , если волна продольная, поперечная; в) примерный график распределения плотности среды  $\rho(x)$  для продольной волны.
- 6.302. Точки, находящиеся на одном луче и удаленные от источника колебаний на расстояние  $l_1$ =12 м и  $l_2$ =14 м, колеблются с разностью фаз  $3\pi/2$ . Определить скорость распространения колебаний в данной среде, если период колебаний источника T=1,0 мс.
- 6.303. Уравнение колебаний вибратора  $x = 3.0 \sin 20\pi t$ , где x выражено в сантиметрах. Считая волну плоской, определить смещение точки, расположенной на расстоянии 5,0 м от источника колебаний, через 0,10 с после начала колебаний при скорости распространения волны 200 м/с.
- 6.304. Два когерентных источника посылают поперечные волны в одинаковых фазах. При какой разности волновых путей  $\Delta l$  при наложении волн друг на друга будет наблюдаться усиление колебаний? Ослабление колебаний? Периоды колебаний равны 0,10 с, скорость распространения волн в среде  $10^3$  м/с.
- 6.305. Два когерентных источника колеблются в одинаковых фазах с частотой 300 Гц. Скорость распространения колебаний в среде равна 1,5 ·  $10^3$  м/с. Определить, при какой наименьшей разности волновых путей будет наблюдаться максимальное усиление колебаний и максимальное ослабление. Каков результат интерференции в точке, расположенной от первого источника на расстоянии 20 м и от второго на расстоянии 30 м?
- 6.306. Определить длину стоячей волны, если расстояния между точками, колеблющимися с одинаковыми амплитудами, равны 5,0 и 15,0 см. Точки расположены на одном луче.

## «Электромагнитные колебания и волны»

## Тема 8. Колебательный контур

6.307. Катушка индуктивностью L=1 м $\Gamma$ н и воздушный конденсатор, состоящий из двух круглых пластин диаметром D=20 см каждая, соединены параллельно. Расстояние d между пластинами равно 1 см. Определить период T колебаний.

- 6.308. Конденсатор электроемкостью C=500 пФ соединен параллельно с катушкой длиной l=40 см и площадью S сечения, равной 5 см $^2$ . Катушка содержит N=1000 витков. Сердечник немагнитный. Найти период T колебаний.
- 6.309. Колебательный контур состоит из катушки индуктивностью L=20 мкГн и конденсатора электроемкостью C=80 нФ. Величина емкости может отклоняться от указанного значения на 2 %. Вычислить, в каких пределах может изменяться длина волны, на которую резонирует контур.
- 6.310. Колебательный контур имеет индуктивность  $L=1.6\,$  мГн, электроемкость  $C=0.04\,$  мкФ и максимальное напряжение  $U_{\rm max}$  на зажимах, равное 200 В. Определить максимальную силу тока  $I_{\rm max}$  в контуре. Сопротивление контура ничтожно мало.
- 6.311. Колебательный контур содержит конденсатор электроемкостью C=8 пФ и катушку индуктивностью L=0.5 мГн. Каково максимальное напряжение  $U_{\rm max}$  на обкладках конденсатора, если максимальная сила тока  $I_{\rm max}=40$  мА?
- 6.312. Катушка (без сердечника) длиной l=50 см и площадью  $S_1$  сечения, равной 3 см², имеет N=1000 витков и соединена параллельно с конденсатором. Конденсатор состоит из двух пластин площадью  $S_2=75$  см² каждая. Расстояние d между пластинами равно 5 мм. Диэлектрик воздух. Определить период T колебаний контура.
- 6.313. Колебательный контур состоит из параллельно соединенных конденсатора электроемкостью C=1 мк $\Phi$  и катушки индуктивностью L=1 м $\Gamma$ н. Сопротивление контура ничтожно мало. Найти частоту  $\nu$  колебаний.
- 6.314. Колебательный контур состоит из конденсатора емкостью 0,025 мкФ и катушки с индуктивностью 1,015 Гн. Омическим сопротивлением цепи пренебрегаем. Конденсатор заряжен количеством электричества 2,5 10<sup>-6</sup> Кл. 1) Написать для данного контура уравнение (с числовыми коэффициентами) изменения разности потенциала на обкладках конденсатора и силы тока в цепи в зависимости от времени. 2) Найти значения разности потенциалом па обкладках конденсатора и силы тока в цепи в моменты времени *T*/8, *T*/4 и *T*/2. 3) Построить графики этих зависимостей в пределах одного периода.
- 6.315. Колебательный контур состоит из конденсатора емкостью 0,025 мкФ и катушки с индуктивностью 1,015 Гн. Омическим сопротивлением цепи пренебрегаем. Конденсатор заряжен количеством электричества 2,5 10<sup>-6</sup> Кл. 1) Написать уравнение (с числовыми коэффициентами) изменения со временем энергии электрического поля, энергии магнитного поля и полной энергии. 2) Найти значения энергии электрического поля, энергии

- магнитного поля и полной энергии в моменты времени T/8, T/4 и T/2. 3) Построить графики этих зависимостей в пределах одного периода.
- 6.316. Уравнение изменения со временем разности потенциалов на обкладках конденсатора в колебательном контуре дано в виде  $U = 50 \cos 10^4 \pi t$  В. Емкость конденсатора 0,1 мкФ. Найти: 1) период колебаний, 2) индуктивность контура, 3) закон изменения со временем силы тока в цепи, 4) длину волны, соответствующую этому контуру.
- 6.317. Уравнение изменения силы тока в колебательном контуре со временем дается в виде  $I = -0.02 \sin 400 \pi t$  А. Индуктивность контура 1 Гн. Найти: 1) период колебаний, 2) емкость контура, 3) максимальную разность потенциалов на обкладках конденсатора, 4) максимальную энергию магнитного поля, 5) максимальную энергию электрического поля.
- 6.318. Чему равно отношение энергии магнитного поля колебательного контура к энергии его электрического поля для момента времени *T*/8?
- 6.319. Колебательный контур состоит из конденсатора емкостью 7 мкФ и катушки индуктивностью 0,23 Гн и сопротивлением 40 Ом. Конденсатор заряжен количеством электричества 5,6  $10^{-4}$  Кл. 1) Найти период колебаний контура. 2) Найти логарифмический декремент затухания колебаний. 3) Написать уравнение зависимости изменения разности потенциалов на обкладках конденсатора от времени. 4) Найти значения разности потенциалов в моменты времени T/2, T, 3T/2 и 2T. 5) Построить график U = f(t) в пределах двух периодов.
- 6.320. Колебательный контур состоит из конденсатора емкостью 0,2 мк $\Phi$  и катушки индуктивностью 5,07  $10^{-3}$  Гн. 1) При каком логарифмическом декременте затухания разность потенциалов на обкладках конденсатора за  $10^{-3}$  с уменьшится в три раза? 2) Чему при этом равно сопротивление контура?
- 6.321. Колебательный контур состоит из индуктивности  $10^{-2}$  Гн, емкости 0,405 мкФ и сопротивления 2 Ом. Найти, во сколько раз уменьшится разность потенциалов на обкладках конденсатора за время одного периода.
- 6.322. Колебательный контур состоит из конденсатора емкостью C = 2,22 нФ и катушки, намотанной из медной проволоки диаметром d = 0,5 мм. Длина катушки l = 20 см. Найти логарифмический декремент затухания колебаний.
- 6.323. Колебательный контур имеет емкость 1,1 нФ и индуктивность  $5\ 10^{-3}$  Гн. Логарифмический декремент затухания равен 0,005. За сколько времени потеряется вследствие затухания 99% энергии контура?

- 6.324. Колебательный контур состоит из конденсатора и длинной катушки, намотанной из медной проволоки с площадью поперечного сечения S=0,1 мм². Длина катушки l=40 см. Чему равна емкость конденсатора C, если ошибка, которую мы допускаем, вычисляя период колебаний контура по приближенной формуле  $T=2\pi\sqrt{LC}$ , равна  $\varepsilon=1\%$ ? У к а з а н и е . Учесть, что ошибка  $\varepsilon=(T_2-T_1)/T_2$ , где  $T_1$  период колебаний, найденный по приближенной формуле, а  $T_2$  период колебаний, найденный по точной формуле.
- 6.325. Колебательный контур состоит из катушки индуктивностью L = 1 мГн и конденсатора емкостью C = 2 нФ. Пренебрегая сопротивлением контура, определить, на какую волну этот контур настроен.
- 6.326. Колебательный контур состоит из катушки индуктивностью L=0.2 мГн и конденсатора площадью пластин  $S=155~{\rm cm}^2$ , расстояние между которыми d=1.5мм. Зная, что контур резонирует на длину волны  $\lambda=630~{\rm m}$ , определить диэлектрическую проницаемость среды, заполняющей пространство между пластинами конденсатора.
- 6.327. Колебательный контур содержит соленоид (длина l=5 см, площадь поперечного сечения  $S_1=1,5$  см<sup>2</sup>, число витков N 500) и плоский конденсатор (расстояние между пластинами d=1,5 мм, площадь пластин  $S_2=100$  см<sup>2</sup>). Определить частоту  $\omega$  собственных колебаний контура.
- 6.328. Колебательный контур состоит из катушки индуктивностью L=0,1 Гн и конденсатора емкостью C=39,5 мкФ. Заряд конденсатора  $Q_{\rm m}=3$  мкКл. Пренебрегая сопротивлением контура, записать уравнение изменения силы тока в цепи в зависимости от времени.
- 6.329. Колебательный контур состоит из катушки индуктивностью L = 0,1 Гн и конденсатора емкостью C = 39,5 мкФ. Заряд конденсатора  $Q_{\rm m} = 3$  мкКл. Пренебрегая сопротивлением контура, записать уравнение изменения напряжения на конденсаторе в зависимости от времени.
- 6.330. Сила тока в колебательном контуре, содержащем катушку индуктивностью L=0,1 Гн и конденсатор, со временем изменяется согласно уравнению  $I=-0,1 \sin 200\pi t$  А. Определить: 1) период колебаний; 2) емкость конденсатора; 3) максимальное напряжение на обкладках конденсатора; 4) максимальную энергию магнитного поля; 5) максимальную энергию электрического поля.
- 6.331. Энергия свободных незатухающих колебаний, происходящих в колебательном контуре, составляет 0,2 мДж. При медленном раздвигании

- пластин конденсатора частота колебаний увеличилась в n=2 раза. Определить работу, совершенную против сил электрического поля.
- 6.332. Конденсатор емкостью C зарядили до напряжения  $U_{\rm m}$  и замкнули на катушку индуктивностью L. Пренебрегая сопротивлением контура, определить амплитудное значение силы тока в данном колебательном контуре.
- 6.333. Колебательный контур содержит катушку с общим числом витков N=100 индуктивностью L=10 мк $\Gamma$ н и конденсатор емкостью C=1 н $\Phi$ . Максимальное напряжение  $U_{\rm m}$  на обкладках конденсатора составляет 100 В. Определить максимальный магнитный поток, пронизывающий катушку.
- 6.334. Дифференциальное уравнение для силы тока в электрическом колебательном контуре задается в виде  $L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{c} = 0$ . Определить: 1) собственную частоту контура; 2) циклическую частоту  $\omega$ ; 3) коэффициент затухания  $\delta$ .
- 6.335. За время, в течение которого система совершает N=50 полных колебаний, амплитуда уменьшается в 2 раза. Определить добротность Q системы.
- 6.336. Частота свободных колебаний некоторой системы  $\omega = 65$  рад/с, а ее добротность Q = 2. Определить собственную частоту  $\omega_0$  колебаний этой системы.
- 6.337. Колебательный контур состоит из катушки индуктивностью L=10 мГн, конденсатора емкостью C=0,1 мкФ и резистора сопротивлением R=20 Ом. Определить, через сколько полных колебаний амплитуда тока в контуре уменьшится в e раз.
- 6.338. Колебательный контур содержит катушку индуктивностью  $L=25 \text{ м}\Gamma$ н, конденсатор емкостью  $C=10 \text{ мк}\Phi$  и резистор сопротивлением R=1 Ом. Конденсатор заряжен количеством электричества  $Q_{\rm m}=1 \text{ мКл}$ . Определить: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсатора от времени.
- 6.339. Определить логарифмический декремент, при котором энергия колебательного контура за N=5 полных колебаний уменьшается в n=8 раз.
- 6.340. Колебательный контур содержит катушку индуктивностью L=6 мк $\Gamma$ н, конденсатор емкостью C=10 н $\Phi$  и резистор сопротивлением R=10 м.

- Определить для случая максимума тока отношение энергии магнитного поля катушки к энергии электрического поля.
- 6.341. Ток в колебательном контуре зависит от времени как  $I = I_m \sin \omega_0 t$ , где  $I_m = 9.0$  мА,  $\omega_0 = 4.5 \cdot 10^4$  с<sup>-1</sup>. Емкость конденсатора C = 0.50 мкФ. Найти индуктивность контура и напряжение на конденсаторе в момент t = 0.
- 6.342. В контуре, состоящем из конденсатора емкости C и катушки с индуктивностью L, совершаются свободные незатухающие колебания, при которых амплитуда напряжения на конденсаторе равна  $U_{\rm m}$ . Найти связь между током I в контуре и напряжением U на конденсаторе.
- 6.343. Колебательный контур состоит из конденсатора емкости C=4,0 мк $\Phi$  и катушки с индуктивностью L=2,0 м $\Gamma$ н и активным сопротивлением R=10 Ом. Найти отношение энергии магнитного поля катушки к энергии электрического поля конденсатора в момент максимума тока.
- 6.344. Найти время, за которое амплитуда колебаний тока в контуре с добротностью Q=5000 уменьшится в  $\eta=2,0$  раза, если частота колебаний  $\nu=2,2$  МГц.
- 6.345. Колебательный контур имеет емкость C = 10 мкФ, индуктивность L = 25 мГн и активное сопротивление R = 1,0 Ом. Через сколько колебаний амплитуда тока в этом контуре уменьшится в e раз?
- 6.346. На сколько процентов отличается частота  $\omega$  свободных колебаний контура с добротностью Q=5,0 от собственной частоты  $\omega_0$  колебаний этого контура?
- 6.347. В контуре, добротность которого Q = 50 и собственная частота колебаний  $\nu_0 = 5,5$  к $\Gamma$ ц, возбуждаются затухающие колебания. Через сколько времени энергия, запасенная в контуре, уменьшится в  $\eta = 2,0$  раза?
- 6.348. Вычислить частоту собственных колебаний в контуре с активным сопротивлением, равным нулю, если индуктивность этого контура равна 12 мГн, а его емкость составляет 0,88 мкФ. Как изменится частота колебаний, если в контур включить последовательно еще три таких же конденсатора?
- 6.349. Чему равен период собственных колебаний в контуре, индуктивность которого равна 2,5 мГн, а емкость равна 1,5 мкФ? Как изменится период колебаний, если параллельно к конденсатору присоединить еще три таких же конденсатора?
- 6.350. Резонанс в колебательном контуре наступает при частоте 4,2 кГц. Определить индуктивность катушки, если емкость конденсатора равна 2,2

- мкФ. Какова разность фаз между током и напряжением в контуре? Активным сопротивлением пренебречь.
- 6.351. Электрический заряд на обкладках конденсатора в колебательном контуре изменяется по закону  $Q = 10^{-2} \times \cos(2\pi t + \pi)$ . Определить круговую частоту, частоту, период и начальную фазу колебаний заряда и максимальную силу тока.
- 6.352. Колебательный контур состоит из катушки индуктивностью 1,0 мГн и конденсатора емкостью 10,0 мкФ. Конденсатор заряжен до максимального напряжения 100 В. Определить максимальный заряд конденсатора и максимальную силу тока в контуре. Записать уравнение для мгновенного значения силы тока. Колебания считать незатухающими.
- 6.353. Колебательный контур состоит из катушки индуктивностью 0,20 мГн и двух одинаковых конденсаторов емкостью 4 мкФ каждый, соединенных последовательно. Определить период свободных колебаний в контуре, максимальный заряд конденсатора и максимальное напряжение на каждом конденсаторе. Максимальная сила тока в контуре равна 0,10 А.
- 6.354. В колебательном контуре с индуктивностью L и емкостью C конденсатор заряжен до максимального напряжения  $U_{\text{макс}}$ . Какой будет сила тока в момент, когда напряжение на конденсаторе уменьшится в два раза? Колебания считать незатухающими.
- 6.355. В колебательном контуре с индуктивностью 0,40 Гн и емкостью 20 мкФ амплитудное значение силы тока равно  $1,0\cdot 10^{-1}$  А. Каким будет напряжение на конденсаторе в момент, когда энергия электрического и энергия магнитного полей будут равны? Колебания считать незатухающими.
- 6.356. В колебательном контуре конденсатору сообщили заряд 1 мКл, после чего в контуре возникли затухающие электромагнитные колебания. Какое количество теплоты выделится к моменту, когда максимальное напряжение на конденсаторе станет меньше начального максимального напряжения в четыре раза? Емкость конденсатора равна 10 мкФ.

## Тема 9. Электромагнитные волны в вакууме и диэлектриках

6.357. Индуктивность L колебательного контура равна 0,5 мГн. Какова должна быть электроемкость C контура, чтобы он резонировал на длину волны  $\lambda = 300$  м?

- 6.358. На какую длину волны  $\lambda$  будет резонировать контур, состоящий из катушки индуктивностью L=4 мк $\Gamma$ н и конденсатора электроемкостью C=1,11 н $\Phi$ ?
- 6.359. Для демонстрации опытов Герца с преломлением электромагнитных волн иногда берут большую призму, изготовленную из парафина. Определить показатель преломления парафина, если его диэлектрическая проницаемость  $\varepsilon = 2$  и магнитная проницаемость  $\mu = 1$ .
- 6.360. Два параллельных провода, погруженных в глицерин, индуктивно соединены с генератором электромагнитных колебаний частотой  $\nu=420$  МГц. Расстояние l между пучностями стоячих волн на проводах равно 7 см. Найти диэлектрическую проницаемость  $\varepsilon$  глицерина. Магнитную проницаемость  $\mu$  принять равной единице.
- 6.361. Колебательный контур состоит из конденсатора емкостью  $800 \text{ п}\Phi$  и катушки, индуктивность которой  $2 \cdot 10^{-3}$  Гн. На какую длину волны настроен контур? Сопротивлением контура пренебречь.
- 6.362. На какой диапазон волн можно настроить колебательный контур, если его индуктивность 2  $10^{-3}$  Гн, а емкость может меняться от 62 до 480 пФ? Сопротивление контура ничтожно мало.
- 6.363. Какую индуктивность надо включить в колебательный контур, чтобы при емкости 2 мкФ получить звуковую частоту 1000 Гц? Сопротивлением контура пренебречь.
- 6.364. Катушка, индуктивность которой  $L=3\ 10^{-5}$  Гн, присоединена к плоскому конденсатору с площадью пластин  $S=100\ {\rm cm}^2$  и расстоянием между ними d=0,1 мм. Чему равна диэлектрическая проницаемость среды, заполняющей пространство между пластинами, если контур резонирует на волну длиной 750 м?
- 6.365. Уравнение изменения со временем разности потенциалов на обкладках конденсатора в колебательном контуре дано в виде  $U = 50 \cos 10^4 \pi t$  В. Емкость конденсатора 0,1 мкФ. Найти: 1) период колебаний, 2) индуктивность контура, 3) закон изменения со временем силы тока в цепи, 4) длину волны, соответствующую этому контуру.
- 6.366. Скорость распространения электромагнитных волн в некоторой среде составляет v = 250 Мм/с. Определить длину волны электромагнитных волн в этой среде, если их частота в вакууме  $v_0 = 1$  МГц.
- 6.367. Для демонстрации преломления электромагнитных волн Герц применял призму, изготовленную из парафина. Определить показатель

- преломления парафина, если его диэлектрическая проницаемость  $\varepsilon = 2$  и магнитная проницаемость  $\mu = 1$ .
- 6.368. Электромагнитная волна с частотой v = 5 МГц переходит из немагнитной среды с диэлектрической проницаемостью  $\varepsilon = 2$  в вакуум. Определить приращение ее длины волны.
- 6.369. Радиолокатор обнаружил в море подводную лодку, отраженный сигнал от которой дошел до него за t=36 мкс. Учитывая, что диэлектрическая проницаемость воды  $\varepsilon=81$ , определить расстояние от локатора до подводной лодки.
- 6.370. После того как между внутренним и внешним проводниками кабеля поместили диэлектрик, скорость распространения электромагнитных волн в кабеле уменьшилась на 63 %. Определить диэлектрическую восприимчивость вещества прослойки.
- 6.371. Колебательный контур содержит конденсатор емкостью C=0.5 нФ и катушку индуктивностью L=0.4 мГн. Определить длину волны излучения, генерируемого контуром.
- 6.372. Определить длину электромагнитной волны в вакууме, на которую настроен колебательный контур, если максимальный заряд на обкладках конденсатора  $Q_{\rm m} = 50$  нКл, а максимальная сила тока в контуре  $I_{\rm A} = 1,5$  А. Активным сопротивлением контура пренебречь.
- 6.373. Длина  $\lambda$  электромагнитной волны в вакууме, на которую настроен колебательный контур, равна 12 м. Пренебрегая активным сопротивлением контура, определить максимальный заряд  $Q_{\rm m}$  на обкладках конденсатора, если максимальная сила тока в контуре  $I_{\rm m}$ = 1 A.
- 6.374. Два параллельных провода, одни концы которых изолированы, погружены в трансформаторное масло, а вторые индуктивно соединены с генератором электромагнитных колебаний частотой 505 МГц, погружены в трансформаторное масло. При соответствующем подборе частоты колебаний в системе возникают стоячие волны. Расстояние между двумя пучностями стоячих волн на проводах равно 20 см. Принимая магнитную проницаемость масла равной единице, определить его диэлектрическую проницаемость.
- 6.375. Два параллельных провода, одни концы которых изолированы, а вторые индуктивно соединены с генератором электромагнитных колебаний, погружены в спирт. При соответствующем подборе частоты колебаний в системе возникают стоячие волны. Расстояние между двумя узлами стоячих волн на проводах равно 40 см. Принимая диэлектрическую проницаемость

- спирта  $\varepsilon = 26$ , а его магнитную проницаемость  $\mu = 1$ , определить частоту колебаний генератора.
- 6.376. Показать, что плоская монохроматическая волна  $E_y = E_0 \cos(\omega t kx + \varphi)$  удовлетворяет волновому уравнению  $\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 E_y}{\partial t^2}$ , где v фазовая скорость электромагнитных волн.
- 6.377. В вакууме вдоль оси *х* распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны равна 10 В/м. Определить амплитуду напряженности магнитного поля волны.
- 6.378. В вакууме вдоль оси x распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны равна 1 мA/m. Определить амплитуду напряженности электрического поля волны.
- 6.379. В вакууме вдоль оси x распространяется плоская монохроматическая электромагнитная волна, описываемая уравнениями  $E = E_0 \cos(\omega t kx)$ ,  $H = H_0 \cos(\omega t kx)$ . Эта волна отражается от плоскости, перпендикулярной оси x. Записать уравнения, описывающие отраженную волну, а также объяснить их физический смысл.
- 6.380. Рассмотреть суперпозицию двух плоских монохроматических электромагнитных волн, распространяющихся вдоль оси x в противоположных направлениях. Начальную фазу прямой и обратной волн принять равной нулю. Определить координаты пучностей и узлов для: 1) электрического вектора E; 2) магнитного вектора H возникшей в результате суперпозиции стоячей волны.
- 6.381. Электромагнитная волна с частотой  $\nu = 3.0$  МГц переходит из вакуума в немагнитную среду с диэлектрической проницаемостью  $\varepsilon = 4.0$ . Найти приращение ее длины волны.
- 6.382. В вакууме распространяется плоская электромагнитная волна  $E = e_y E_m \cos(\omega t kx)$ , где  $e_y$  орт оси y,  $E_m = 160$  В/м, k = 0.51 м<sup>-1</sup>. Найти вектор H в точке с координатой x = 7.7 м в момент t = 0.
- 6.383. В вакууме распространяется плоская электромагнитная волна  $E = e_y E_m \cos(\omega t kx)$ , где  $e_y$  орт оси y,  $E_m = 160$  В/м, k = 0.51 м<sup>-1</sup>. Найти вектор H в точке с координатой x = 7.7 м в момент t = 33 нс.
- 6.384. Какой длины электромагнитные волны излучает в вакууме колебательный контур с емкостью 2,6 пФ и с индуктивностью 0,012 мГн, когда в нем происходят колебания с собственной частотой?

- 6.385. Колебательный контур излучает в воздухе электромагнитные волны длиной 150 м. Какая емкость включена в контур, если его индуктивность равна 0,25 мГн? Активным сопротивлением пренебречь.
- 6.386. Колебательный контур радиоприемника имеет индуктивность 0,32 мГн и переменную емкость. Радиоприемник может принимать волны длиной от 188 до 545 м. В каких пределах изменяется емкость контура в приемнике? Активным сопротивлением контура пренебречь.
- 6.387. На какой диапазон длин волн рассчитан приемник, если индуктивность приемного контура равна 1,5 мГн, а его емкость может изменяться от 75 до 650 пФ? Активным сопротивлением контура пренебречь.
- 6.388. Входной контур радиоприемника состоит из катушки, индуктивность которой равна 2,0 мГн, и плоского конденсатора с площадью пластин 10,0 см<sup>2</sup> и расстоянием между ними 2,0 мм. Пространство между пластинами заполнено слюдой с диэлектрической проницаемостью 7,5. На какую длину волны настроен радиоприемник?
- 6.389. На какую длину волны настроен колебательный контур с индуктивностью L, если максимальная сила тока в контуре равна  $I_{\text{макс}}$ , а максимальное напряжение на конденсаторе составляет  $U_{\text{макс}}$ ? Скорость распространения электромагнитных волн равна v.
- 6.390. Определить длину волны, на которую настроен колебательный контур, если максимальный заряд конденсатора равен  $Q_{\text{макс}}$ , а максимальная сила тока в контуре составляет  $I_{\text{макс}}$ . Скорость распространения электромагнитных волн равна v.
- 6.391. Определить период свободных колебаний в контуре, состоящем из конденсатора емкостью 0,064 мкФ, катушки индуктивностью 0,18 мГн и активного сопротивления 50 Ом.
- 6.392. Чему равна частота свободных колебаний в контуре, имеющем емкость 2,2 мкФ, индуктивность 0,12 мГн и активное сопротивление 15 Ом?
- 6.393. Волны какой длины будет излучать в вакууме контур с емкостью 2400 пФ, индуктивностью 0,054 мГн и активным сопротивлением 76 Ом, совершающий свободные колебания?
- 6.394. Частота свободных колебаний в контуре равна 250 кГц. Определить емкость в контуре, если индуктивность в нем равна 0,024 мГн и активное сопротивление равно 34 Ом.

## Тема 10. Энергия электромагнитной волны

- 6.395. В вакууме вдоль оси x распространяется плоская электромагнитная волна и падает по нормали на поверхность тела, полностью поглощающего. Амплитуда напряженности магнитного поля волны равна 0.15 A/M. Определить давление, оказываемое волной Воспользоваться результатом выводов теории Максвелла о том, что если тело полностью поглощает падающую на него энергию, то давление равно объемной среднему значению плотности энергии падающей электромагнитной волне.
- 6.396. В вакууме вдоль оси *х* распространяется плоская электромагнитная волна и падает по нормали на поверхность тела, полностью ее поглощающего. Амплитуда напряженности электрического поля волны равна 2 В/м. Определить давление, оказываемое волной на тело. Воспользоваться результатом выводов теории Максвелла о том, что если тело полностью поглощает падающую на него энергию, то давление равно среднему значению объемной плотности энергии в падающей электромагнитной волне.
- 6.397. Плоская монохроматическая электромагнитная волна распространяется вдоль оси x. Амплитуда напряженности электрического поля волны  $E_0 = 5$  мВ/м, амплитуда напряженности магнитного поля волны  $H_0 = 1$  мА/м. Определить энергию, перенесенную волной за время t = 10 мин через площадку, расположенную перпендикулярно оси x, площадью поверхности S = 15 см². Период волны  $T \ll t$ .
- 6.398. В вакууме вдоль оси x распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 50 мВ/м. Определить интенсивность волны I, т. е. среднюю энергию, проходящую через единицу поверхности в единицу времени.
- 6.399. В вакууме вдоль оси x распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля составляет 5 мА/м. Определить интенсивность волны I, т. е. среднюю энергию, проходящую через единицу поверхности в единицу времени.
- 6.400. Найти средний вектор Пойнтинга  $\langle S \rangle$  у плоской электромагнитной волны  $E = E_m \cos(\omega t kr)$ , если волна распространяется в вакууме.
- 6.401. В вакууме распространяется плоская электромагнитная волна, частота которой  $\nu=100~{\rm M\Gamma u}$  и амплитуда электрической составляющей  $E_m=50~{\rm mB/m}$ . Найти средние за период колебания значения: а) модуля плотности тока смещения; б) плотности потока энергии;

- 6.402. В вакууме распространяется плоская электромагнитная волна частоты  $\omega$ , для которой среднее значение плотности потока энергии равно  $\langle S \rangle$ . Найти амплитудное значение тока смещения в этой волне.
- 6.403. В вакууме вдоль оси x распространяются две плоские одинаково поляризованные электромагнитные волны, электрические составляющие которых изменяются по закону  $E_1 = E_0 \cos(\omega t kx)$  и  $E_2 = E_0 \cos(\omega t kx + \varphi)$ . Найти среднее значение плотности потока энергии.
- 6.404. В вакууме распространяются две плоские электромагнитные волны, одна вдоль оси x, другая вдоль оси y:  $E_1 = E_0 \cos(\omega t kx)$ ,  $E_2 = E_0 \cos(\omega t ky)$ , где вектор  $E_0$  направлен параллельно оси z. Найти среднее значение плотности потока энергии в точках плоскости y = x.