УНИВЕРСИТЕТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение ФЕДЕРАЛЬНЫЙ высшего профессионального образования "Южный федеральный университет"

Учебно-методическое пособие

для выполнения индивидуального задания по дисциплине

Физика

Часть 1

Болдырев А.С., Гатько Л.Е., Редин А.А., Фатеева В.В. Учебнометодическое пособие для выполнения индивидуального задания по дисциплине «Физика». Ч.1. – Таганрог: Изд-во ЮФУ, 2012. – 65 с.

В пособии приводятся общие рекомендации к выполнению самостоятельной работы по дисциплине «Физика» по разделам: механика, специальная теория относительности, молекулярная физика и термодинамика. Также приводятся содержание теории (перечислены темы, по которым сформированы индивидуальные задания), основные законы и соотношения, примеры решения задач и таблицы вариантов индивидуальных заданий.

Пособие предназначено для студентов дневного отделения, обучающихся по всем инженерным специальностям.

Табл. 14. Ил. 22. Библиогр.: 7 назв.

Рецензенты:

Г.В. Куповых, д-р физ.-мат. наук, профессор кафедры физики ЮФУ; В.Г. Сапогин, канд. техн. наук, профессор кафедры физики ЮФУ.

- © ЮФУ, 2012
- © Болдырев А.С., 2012
- © Гатько Л.Е., 2012
- © Редин А.А., 2012
- © Фатеева В.А., 2012

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	4
Общие методические указания	6
РАЗДЕЛ 1. КИНЕМАТИКА. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И	
ТЕЛА, ДВИЖУЩЕГОСЯ ПОСТУПАТЕЛЬНО	9
1.1. Содержание теории	9
1.2. Формулы для решения задач	
1.3. Примеры решения задач	
1.4. Варианты индивидуальных заданий	
РАЗДЕЛ 2. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ.	
РЕЛЯТИВИСТСКАЯ МЕХАНИКА	24
2.1. Содержание теории	24
2.2. Формулы для решения задач	
2.3. Примеры решения задач	
2.4. Варианты индивидуальных заданий	
РАЗДЕЛ 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА	40
3.1. Содержание теории	40
3.2. Формулы для решения задач	
3.3. Примеры решения задач	
3.4. Варианты индивидуальных заданий	
ПРИЛОЖЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	

ПРЕДИСЛОВИЕ

Важнейшими направлениями интенсификации учебного процесса высшей школы являются индивидуализация обучения и развитие творческих способностей будущих специалистов. Этому способствуют внедрение активных форм и методов обучения, а также использование эффективных форм организации самостоятельной работы студентов.

Для достижения высокого уровня научно-практической подготовки специалистов необходимо обеспечить возможность получения глубоких фундаментальных знаний организовать самостоятельную работу, обучения, чтобы повысить качество способности студентов, ИХ стремление К непрерывному приобретению новых знаний, а также учесть приоритетность интересов студентов в самоопределении и самореализации.

Внеаудиторная самостоятельная работа студентов является неотъемлемой составляющей образовательного процесса в высшем учебном заведении. Выполнение самостоятельной работы воспитывает у студентов сознательное отношение к овладению теоретическими и практическими знаниями, прививает привычку к напряженному интеллектуальному труду. Это считается одной из важнейших задач образования. Выполнение индивидуальных заданий по самостоятельной работе учит студентов овладению способами добывания знаний, т.е. учит студентов учиться.

Самостоятельная активизирует работа студента как своим организационным устройством, так и содержанием получаемого знания, а высокая степень самостоятельности всех учебных действий предполагает становление у него элементов культуры самостоятельного труда в процессе многоуровневой системы обучения в вузе. К организационным условиям выполнения самостоятельной работы студентом следует отнести: устойчивую внутреннюю мотивацию к учебе и к самостоятельной работе; наличие общеучебных и специальных умений, позволяющих успешно осуществлять процесс обучения в ходе внеаудиторной самостоятельной работы; стойкий познавательный интерес к процессу познания и к самостоятельному добыванию первоначального наличие запаса знаний, организации и осуществления внеаудиторной самостоятельной работы.

В процессе выполнения внеаудиторной самостоятельной работы создаются необходимые предпосылки для постепенного перерастания контроля в процессе обучения в самоконтроль, обучения - в самообучение, т.е. для формирования у студента самообразовательной деятельности как условия постоянного профессионального роста.

Следует отметить, что самостоятельную работу студента следует рассматривать не только с точки зрения достижения учебных целей, но и в более широком контексте - как средство формирования самостоятельности личностной характеристики будущего специалиста, повышающее его познавательную, социальную и профессиональную мобильность, формирующее

у него активно преобразовательное отношение к окружающей действительности и к самому себе.

Настоящее пособие призвано помочь студентам выполнить индивидуальное задание по курсу физики в 1 семестре. Здесь рассматриваемый материал разбит на три раздела, включающих классическую механику, СТО, молекулярную физику и термодинамику.

Каждый раздел имеет следующую последовательность изложения материала: содержание теории (перечень основных тем в количестве 7 - 10); основные формулы для решения задач; примеры решения задач. Номера примеров решения задач соответствуют номерам в перечне основных тем. Далее следует таблица вариантов предлагаемых индивидуальных заданий, объем и состав которых могут изменяться преподавателем.

Тексты задач представлены в электронном виде на сайте кафедры под номерами, соответствующими номерам в таблице вариантов.

В конце пособия приведено приложение, где помимо табличных данных и физических постоянных помещены некоторые сведения из математики, включающие простейшие операции с векторами и формулы дифференциального и интегрального исчислений.

Заканчивается пособие библиографическим списком, содержащим ссылки на сборники задач, на основе которых формировался банк задач для самостоятельной работы студентов.

Все замечания о проделанной работе авторы примут с благодарностью.

Общие методические указания

Инструкция по выполнению внеаудиторной самостоятельной работы

Физическая задача — это модель физического явления с некоторыми известными и неизвестными физическими величинами, характеризующими это явление.

Решить физическую задачу — это значит восстановить неизвестные связи и определить искомые физические величины.

Задачи по физике весьма разнообразны, и дать единые рекомендации для их решения невозможно. Поэтому мы попытаемся выделить те общие положения, выполнение которых будет полезным во всех разделах изучаемой программы.

- 1. Прежде чем приступить к решению задач выбранного раздела, необходимо повторить теорию, используя курс лекций и учебник.
- 2. Прочитать внимательно условие задачи, четко представить себе характер описанного явления.
- 3. Произвести аккуратную запись заданных величин и их размеров, выделить неизвестные.
- 4. Дать схематический рисунок (чертеж, схему и др.), поясняющий содержание задачи.
- 5. Выразить все величины, входящие в условие задачи в единицах системы СИ.
- 6. Выяснить, можно ли в данной задаче рассматривать тело как материальную точку; последнее позволяет пренебречь формой тела и его размерами. В зависимости от этого меняется характер решения.
- 7. Выявить все упрощающие предположения, которые нужно сделать, чтобы решить данную задачу (например, в некоторых задачах пренебрегают трением, влиянием среды, неоднородностью образца и т. д.).
- 8. Выразить неизвестные физические величины через известные величины аналитически на основе законов и формул, применяемых к явлениям, описанным в задаче. При сомнении в правильности полученного результата проверить общее решение по равенству размерности левой и правой частей уравнения. Промежуточные расчеты допускаются только в случаях громоздких общих решений.
- 9. При поиске решения необходимо выяснить, какие величины заданы в задаче: если величины векторные, то применяют правила геометрического сложения и вычитания. Если величины скалярные, используют правила алгебры.
- 10. В полученное общее решение подставить вместо букв численные значения величин в одной системе единиц. Количество значащих цифр ответа (точность ответа) не должна превышать количество значащих цифр исходных данных задачи.

11. Получив числовой ответ, оцените его с точки зрения здравого смысла. Это поможет обнаружить ошибочность полученного результата. Так, например, скорость частицы не может быть больше скорости света в вакууме, коэффициент полезного действия двигателя – отрицательным и т.д.

Краткие сведения о Международной системе единиц измерения физических величин

Наличие единиц разных систем, а также внесистемных для одной и той же физической величины требует особого внимания при подготовке к расчету полученного результата.

В настоящее время в мире широко используется Международная система единиц СИ. Согласно ГОСТ 9867 01, эта система является предпочтительной во всех областях науки и техники.

В основу построения системы СИ положены единицы семи физических величин (табл. 1).

Таблица 1

Физическая величина	Наименование единиц			
Длина	метр	M		
Macca	килограмм	КΓ		
Время	секунда	c		
Сила электрического тока	ампер	A		
Термодинамическая температура	кельвин	К		
Сила света	кандела	кд		
Количество вещества	МОЛЬ	M		

Кроме основных единиц, система СИ содержит две дополнительные: для плоского угла - радиан (рад) и для телесного - стерадиан (ср).

Основные единицы имеют удобные для практических целей размеры.

- 1. Единица длины метр, наименование взято из греческого языка и в переводе означает «мера». Метр длина, равная $1650\ 763,73\ длин$ волн в вакууме излучения, соответствующего переходу между уровнями $2p_{10}$ и $5d_5$ атома криптона-86.
- 2. Единица измерения массы килограмм. В качестве единицы массы была принята масса $1~{\rm дm}^3$ чистой воды при температуре ее наибольшей плотности (4 °C).
- 3. Секунда единица времени, равна 9, 192 631 770 периода излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при отсутствии возмущения внешними полями.

- 4. Ампер единица силы электрического тока. Ампер неизменяющегося тока, который, проходя ПО двум параллельным прямолинейным проводникам бесконечной длины И ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу взаимодействия, равную 2.10^{-7} H на каждый метр длины.
- 5. Кельвин единица термодинамической температуры. Кельвин как единица температурного интервала составляет 1/273,16 части термодинамической температуры тройной точки воды.
- 6. Моль количество вещества системы, содержащее столько же структурных элементов, сколько атомов содержится в нуклиде углерода 12 С массой 0,012 кг.
- 7. Кандела сила света в заданном направлении источника, испускающего монохроматическое излучение частотой $540 \cdot 10^{12}$ Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.
- 8. Радиан угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.
- 9. Стерадиан телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Размерности остальных физических величин являются производными от размерностей основных величин.

РАЗДЕЛ 1. **КИНЕМАТИКА. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И** ТЕЛА, ДВИЖУЩЕГОСЯ ПОСТУПАТЕЛЬНО

1.1. Содержание теории

- 1. Кинематика прямолинейного движения материальной точки.
- 2. Кинематика движения материальной точки по окружности.
- 3. Криволинейное движение.
- 4. Законы Ньютона.
- 5. Динамика движения тел с учетом действия сил трения и сопротивления среды.
- 6. Динамика движения тел по наклонной плоскости.
- 7. Динамика движения тел по окружности.
- 8. Импульс. Закон сохранения импульса.
- 9. Энергия. Закон сохранения механической энергии.
- 10. Механические работа и мощность.

1.2. Формулы для решения задач

Кинематика

1. Положение материальной точки в декартовой системе координат задается радиусом-вектором \vec{r} :

$$\vec{r} = \vec{i}x + \vec{j}y + \vec{k}z,$$

где \vec{i} , \vec{j} , \vec{k} — орты декартовой системы координат; x, y, z — координаты точки.

2. Средняя скорость $\langle \upsilon \rangle = \frac{\Delta r}{\Delta t}$, где Δr - модуль перемещения материальной точки за интервал времени Δt .

Средняя путевая скорость $\langle \upsilon_\Pi \rangle = \frac{\Delta s}{\Delta t}$, где Δs - путь, пройденный точкой за интервал времени Δt .

Мгновенная скорость

$$\vec{\upsilon} = \frac{d\vec{r}}{dt} = \vec{i}\,\upsilon_x + \vec{j}\,\upsilon_y + \vec{k}\,\upsilon_z,$$

где $\upsilon_x=\frac{dx}{dt};\upsilon_y=\frac{dy}{dt};\upsilon_z=\frac{dz}{dt}$ - проекции мгновенной скорости на координатные оси.

Так как при малых перемещениях $\left| d\vec{r} \right| = ds$, то мгновенная путевая скорость $\frac{ds}{dt}$ и модуль мгновенной скорости $\frac{\left| d\vec{r} \right|}{dt}$ совпадают.

Модуль мгновенной скорости $\upsilon = \sqrt{\upsilon_x^2 + \upsilon_y^2 + \upsilon_z^2}$.

3. Мгновенное ускорение

$$\vec{a} = \frac{d\vec{v}}{dt} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k},$$

где $a_x = \frac{dv_x}{dt}$; $a_y = \frac{dv_y}{dt}$; $a_z = \frac{dv_z}{dt}$ - проекции вектора ускорения на координатные оси.

Модуль мгновенного ускорения

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} \ .$$

4. При равномерном движении материальной точки вдоль оси x кинематическое уравнение движения

$$x = x_0 + v_x \cdot t$$
.

При равнопеременном прямолинейном движении точки ($a_x = \text{const}$) вдоль оси x кинематическое уравнение движения

$$x = x_0 + v_{0x} \cdot t + a_x \cdot t^2 / 2$$
.

Скорость точки при равнопеременном движении вдоль оси x

$$\upsilon_{x} = \upsilon_{0x} + a_{x} t.$$

Связь скорости и ускорения при равнопеременном прямолинейном движении:

$$\upsilon_x^2 - \upsilon_{0x}^2 = 2a_x \cdot x.$$

5. Положение материальной точки при вращении по окружности определяется вектором угла поворота $\vec{\phi}(t)$.

Мгновенная угловая скорость

$$\omega = \frac{d\vec{\varphi}}{dt}.$$

Мгновенное угловое ускорение

$$\vec{\varepsilon} = \frac{d\vec{\omega}}{dt}.$$

Направления векторов $\vec{\phi}$, $\vec{\omega}$ находятся по правилу правого винта; они совпадают с неподвижной в пространстве осью вращения. Направление $\vec{\varepsilon}$ коллинеарно этим векторам.

При постоянной угловой скорости $\omega = 2\pi v$, $\omega = 2\pi/T$, где T- период (время одного полного оборота); v- частота вращения (число оборотов, совершаемых в единицу времени).

При равномерном вращении ($\varepsilon=0$) кинематическое уравнение движения имеет вид

$$\varphi = \varphi_0 + \omega t$$
,

где φ_0 - начальное угловое перемещение.

При равнопеременном вращении ($\varepsilon = \mathrm{const}$) кинематическое уравнение движения имеет вид

$$\varphi = \varphi_0 + \omega_0 t + \frac{\varepsilon t^2}{2}$$
, где ω_0 — начальная угловая скорость.

Мгновенная угловая скорость при таком вращении равна $\omega = \omega_0 + \varepsilon \cdot t$.

В приведенных выражениях $\varphi_0, \omega_0, \varepsilon$ - алгебраические величины.

6. Ускорение в плоском криволинейном движении, если материальная точка находится в точке A траектории и точка O – начало координам (рис. 1), равно

$$\vec{a} = \vec{a}_n + \vec{a}_\tau, \quad a = \sqrt{a_n^2 + a_\tau^2},$$

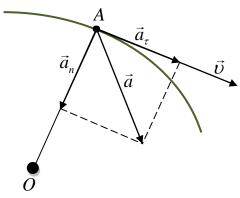


Рис. 1

где т. О — начало координат, $a_{\tau} = \left| \frac{d\upsilon}{dt} \right|$ - модуль тангенциальной компоненты ускорения, характеризующей быстроту изменения модуля скорости υ ; $a_n = \left| \frac{\upsilon^2}{R} \right|$ - модуль нормальной компоненты ускорения, характеризующей быстроту изменения вектора скорости $\vec{\upsilon}$ по направлению.

7. Связь между линейными и угловыми величинами при движении точки по окружности радиусом R:

$$v = \omega R$$
; $a_{\tau} = \varepsilon R$; $a_{\rm n} = \frac{v^2}{R} = \omega^2 R$, $a = R\sqrt{\varepsilon^2 + \omega^4}$.

Динамика материальной точки и тела, движущегося поступательно

1. Второй закон Ньютона: $\vec{F}=\frac{d\vec{P}}{dt}$, где $\vec{P}=m\vec{\upsilon}$ - импульс тела,

 $ec{F}$ - результирующая сила, действующая на тело в момент времени t .

- 2. Силы в механике:
- а) сила упругости F = -kx, где k коэффициент упругости, x смещение при деформации (смещение является алгебраической величиной);

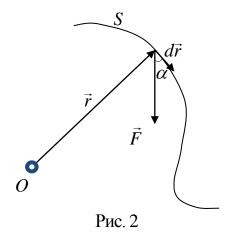
- б) сила гравитационного взаимодействия $F = G \frac{m_1 m_2}{r^2}$, где G гравитационная постоянная, m_1 , m_2 массы тел, рассматриваемых как материальные точки, r расстояние между ними;
- в) сила трения скольжения $F_{TP} = \mu N$, где μ коэффициент трения, N- сила реакции опоры;
- Γ) сила вязкого трения для малых скоростей движения $F=-k \upsilon$, где k- коэффициент сопротивления среды.
 - 3. Закон сохранения импульса.

Если на механическую систему не действуют внешние силы или результирующая этих сил равна нулю, суммарный импульс системы при взаимодействиях тел внутри нее остается неизменным:

$$\sum_{i=1}^{n} \vec{P}_{i} = const$$
 , где \vec{P}_{i} - импульс i -го тела.

Закон сохранения импульса для системы двух тел: $m_1\vec{v}_1+m_2\vec{v}_2=m_1\vec{u}_1+m_2\vec{u}_2$, где $m_1,\ m_2$ — массы тел; \vec{v}_1,\vec{v}_2 — их скорости до взаимодействия; \vec{u}_1,\vec{u}_2 — их скорости после взаимодействия.

4. Работа и мощность.



Работа переменной силы при перемещении тела вдоль траектории S

$$A = \int_{S} \vec{F} d\vec{r} = \int_{S} F \cos \alpha \, dr \,,$$

где α - угол между векторами силы \vec{F} и элементарного перемещения $d\vec{r}$ (рис. 2).

Средняя мощность за интервал времени Δt

$$\langle N \rangle = \frac{\Delta A}{\Delta t}.$$

Мгновенная мощность

$$N = \frac{dA}{dt} = F \upsilon \cos \alpha,$$

где dA – элементарная работа, совершаемая за интервал времени dt.

5. Кинетическая энергия при поступательном движении

$$T = \frac{m\upsilon^2}{2} = \frac{P^2}{2m}.$$

- 6. Связь кинетической энергии и работы результирующей силы, действующей на тело: $A = \Delta T = T_2 T_1$.
- 7. Потенциальная энергия:
- в поле упругих сил $U = \frac{kx^2}{2}$,
- в поле гравитационного взаимодействия $U=-G\frac{m_{\mathrm{l}}m_{\mathrm{2}}}{r}$,
- в поле силы тяжести (частный случай гравитационного взаимодействия) $U = mgh. \label{eq:U}$
- 8. Связь силы и потенциальной энергии в одномерном случае: $F = -\frac{dU}{dx}$.
- 9. Закон сохранения механической энергии.

Полная механическая энергия системы тел, на которые действуют только консервативные силы, остается постоянной:

$$E = T + U = const$$

1.3. Примеры решения задач

Пример 1.

Ускорение материальной точки изменяется по закону $\vec{a} = At^2\vec{i} - B\vec{j}$, где A = 3 м/с⁴, B = 3 м/с². Найти, на каком. расстоянии от начала координат она будет находиться в момент времени t = 1 с, если в начальный момент времени она покоилась в начале координат.

Дано:
$$\vec{a} = At^2\vec{i} - B\vec{j}$$
; $A=3 \text{ м/c}^4$; $B=3 \text{ м/c}^2$; $\upsilon_0 = 0$; $r_0 = 0$; $t=1 \text{ c.}$

Hайти: $|\vec{r}|$.

Решение.

Из условия задачи видно, что материальная точка движется в плоскости XOY:

$$\vec{a} = \frac{d\vec{v}}{dt}$$
 или $\vec{a} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j}$. Отсюда можно записать (после

сопоставления с законом изменения ускорения), что
$$\frac{dv_x}{dt} = At^2$$
, $\frac{dv_y}{dt} = -B$.

Разделяя переменные и интегрируя, получаем компоненты вектора скорости $\upsilon_x = \frac{At^3}{3} + C_1$, $\upsilon_y = -Bt + C_2$.

Учитывая начальные условия ($\upsilon_x=0$, $\upsilon_y=0$ при t=0), находим значения произвольных постоянных: $C_1=0$, $C_2=0$.

Из системы дифференциальных уравнений $\frac{dx}{dt} = \frac{At^3}{3}; \frac{dy}{dt} = -Bt$ определим компоненты x(t) и y(t) радиуса-вектора $\vec{r}(t)$:

$$x(t) = \frac{At^4}{12} + C_3, \quad y(t) = -\frac{Bt^2}{2} + C_4, \tag{1}$$

где C_3 и C_4 - произвольные постоянные. Учитывая начальные условия $(x=0;\,y=0$ при t=0), из уравнений (1) находим, что $C_3=C_4=0$.

Закон движения имеет вид $\vec{r}(t) = \frac{At^4}{12}\vec{i} - \frac{Bt^2}{2}\vec{j};$ модуль вектора $|\vec{r}| = \sqrt{x^2 + y^2}$, для момента времени t = 1 с получаем $r \approx 1,5$ м.

Пример 2.

Поезд движется прямолинейно со скоростью $\upsilon_0 = 180$ км/ч. Внезапно на пути возникает препятствие, и машинист включает тормозной механизм. С этого момента скорость поезда изменяется по закону $\upsilon = \upsilon_0 - At^2$, где A = 1 м/с³. Каков тормозной путь поезда? Через какое время после начала торможения он остановится?

Дано: $\upsilon_0 = 180 \text{ км/ч} = 50 \text{ м/c}; \ \upsilon = \upsilon_0 - At^2; A = 1 \text{ м/c}^3.$

Найти: S, t.

Решение.

Движение тела одномерно (вдоль оси x), и для нахождения закона его движения необходимо одно дифференциальное уравнение.

Известно, что $\upsilon = \frac{dx}{dt}$; отсюда $dx = \upsilon dt$ или

$$dx = (v_0 - At^2)dt. (1)$$

Для нахождения закона движения проинтегрируем данное дифференциальное выражение (1) и получаем

$$S = x = \int_{0}^{t} (\upsilon_0 - At^2) dt = \upsilon_0 t - \frac{At^3}{3}.$$

Для нахождения времени торможения t учтем тот факт, что в конечной точке скорость тела равна нулю:

 $\upsilon_0 - At^2 = 0$; отсюда находим $t = \sqrt{\frac{\upsilon_0}{A}}$. Подстановка числовых значений дает $t \approx 7$ с, $S \approx 236$ м.

Пример 3.

Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение движения автомобиля $\xi(t)=A+Bt+Ct^2$, где A=10 м, B=10 м/с, C=-0.5 м/с 2 . Найти скорость υ автомобиля, его

тангенциальное a_{τ} , нормальное a_n и полное a ускорения в момент времени t=5 с.

Дано: R = 50 м; $\xi(t) = A + Bt + Ct^2$; A = 10 м; B = 10 м/c; C = -0.5 м/c²; t = 5 с.

Найти: υ , a_{τ} , a_{n} , a.

Решение.

Зная уравнение движения, найдем скорость: $\upsilon = \frac{d\xi}{dt} = B + 2Ct$.

Подставим в это выражение значения B, C, t и произведем вычисления: $\upsilon = 5$ м/с.

Тангенциальное ускорение $a_{\tau} = \frac{dv}{dt} = 2C$, $a_{\tau} = -1$ м/c².

Нормальное ускорение $a_n = \frac{v^2}{R}$, $a_n = 0.5$ м/с².

Полное ускорение $\vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$.

Модуль ускорения $a = \sqrt{a_{\tau}^2 + a_n^2}$, a = 1,12 м/с².

Пример 4.

Через блок, укрепленный на конце стола, перекинута нерастяжимая нить, к концам которой прикреплены грузы, один из которых $m_1=0,4$ кг движется по поверхности стола, а другой $m_2=0,6$ кг вдоль вертикали вниз. Коэффициент трения груза о стол $\mu=0,1$. Считая нить и блок невесомыми, определить, с каким ускорением движутся грузы и силу натяжения нити.

Дано: $m_1 = 0,4$ кг, $m_2 = 0,6$ кг, $\mu = 0,1$.

Найти: а, Т.

Решение.

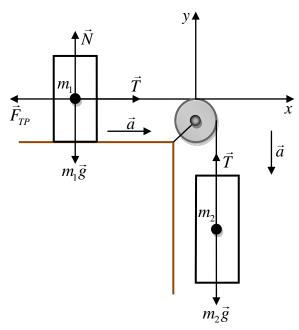


Рис. 3

Запишем основной закон динамики для каждого тела:

$$m_{\scriptscriptstyle 1}\vec{a}=m_{\scriptscriptstyle 1}\vec{g}+\vec{T}+\vec{N}+\vec{F}_{\scriptscriptstyle mp}\,,$$

$$m_2\vec{a}=m_2\vec{g}+\vec{T}$$
.

В проекциях на выбранные оси ОХ и ОУ эти уравнения имеют вид $m_1 a = T - F_{mp},$

$$0 = N - m_1 g$$
, отсюда $N = m_1 g$,

$$-m_2a = T - m_2g.$$

Учитывая, что $F_{mp} = \mu N = \mu m_1 g$, получим систему уравнений

$$m_1 a = T - \mu m_1 g$$
.

$$-m_2a=T-m_2g,$$

откуда искомое ускорение равно

$$a = \frac{(m_2 - \mu m_1)g}{m_1 + m_2} \,.$$

Силу натяжения нити найдем из второго уравнения системы

$$T = m_2(g - a),$$

вычисляя, получим:
$$a = 5.5 \text{ м/c}^2$$
, $T = 2.6 \text{ H}$.

Пример 5.

Парашютист массой т делает затяжной прыжок с начальной скоростью v_0 . Найти закон его движения в векторной форме до раскрытия парашюта, если сопротивления пропорциональна воздуха скорости движения парашютиста: $\vec{F}_c = -k\vec{\upsilon}$.

Дано:
$$m$$
, υ_0 , $\vec{F}_c = -k\vec{\upsilon}$.

Найти: $\vec{r}(t)$.

Решение.

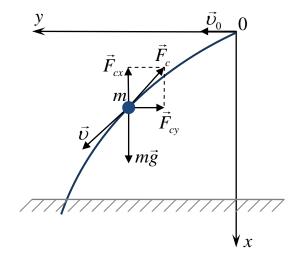


Рис. 4

Рассмотрим движение тела в инерциальной системе отсчета. Начало координат поместим в точку O, из которой начинается движение парашютиста. Ось OX направим вертикально вниз (рис. 4).

На парашютиста действуют две силы: сила тяжести $m\vec{g}$ и сила сопротивления воздуха $\vec{F}_c = -k\vec{\upsilon}$. По второму закону Ньютона $m\vec{g} + \vec{F}_c = m\vec{a}$. Сила сопротивления \vec{F}_c направлена по касательной к траектории и, следовательно, необходимо учитывать векторный характер второго закона Ньютона:

$$mg - k\upsilon_x = m\frac{d\upsilon_x}{dt},\tag{1}$$

$$-k\upsilon_{y} = m\frac{d\upsilon_{y}}{dt}.$$
 (2)

Разделяя переменные в уравнениях (1) и (2), после интегрирования с учетом начального условия ($\upsilon_x = 0$, $\upsilon_y = \upsilon_0$ при t = 0) находим

$$v_{x} = \frac{mg}{k} \left(1 - e^{-\left(\frac{k}{m}\right)t} \right), \tag{3}$$

$$\upsilon_{y} = \upsilon_{0} e^{-\left(\frac{k}{m}\right)t}.$$
 (4)

Найдем закон движения парашютиста. Подставив в соотношения $dx = \upsilon_x dt$ и $dy = \upsilon_y dt$ значения υ_x и υ_y из уравнений (3) и (4), получим два дифференциальных уравнения для определения двух неизвестных функций x(t) и y(t) - компонент радиуса-вектора $\vec{r}(t)$:

$$dx = \frac{mg}{k} \left(1 - e^{-\left(\frac{k}{m}\right)t} \right) dt,$$

$$dy = v_0 e^{-\left(\frac{k}{m}\right)t} dt.$$

После интегрирования этих уравнений и учета начальных условий (x = 0, y = 0 при t = 0), находим закон движения парашютиста в параметрической форме в виде двух уравнений:

$$x = \frac{mg}{k}t - \frac{m^{2}g}{k^{2}}\left(1 - e^{-\left(\frac{k}{m}\right)t}\right), \ \ y = \frac{m\nu_{0}}{k}\left(1 - e^{-\left(\frac{k}{m}\right)t}\right).$$

Отсюда

$$\vec{r}(t) = \left[\frac{mg}{k} t - \frac{m^2 g}{k^2} \left(1 - e^{-\frac{k}{m}t} \right) \right] \vec{i} + \left[\frac{m \nu_0}{k} \left(1 - e^{-\frac{k}{m}t} \right) \right] \vec{j}.$$

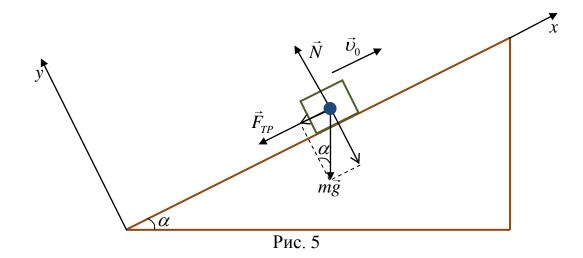
Пример 6.

Через какое время скорость тела, которому была сообщена скорость υ_0 , направленная верх по наклонной плоскости, снова будет равна υ_0 ?

Коэффициент трения μ , угол наклона наклонной плоскости к горизонту α . Тело начинает двигаться со скоростью υ_0 , находясь посередине наклонной плоскости.

Дано: ν_0 , μ , α .

Найти: t. Решение.



Скорость тела снова станет равной υ_0 , когда тело будет спускаться по наклонной плоскости. На тело действует три силы: сила тяжести $m\vec{g}$, сила нормальной реакции опоры \vec{N} , сила трения \vec{F}_{mp} .

По основному закону динамики для тела имеем:

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{mp} \,. \tag{1}$$

Когда тело движется вверх, в проекциях на оси координат уравнение (1) имеет вид

на ось X: $-ma_1 = -mg \sin \alpha - F_{mn}$,

на ось $Y: 0 = N - mg \cos \alpha$;

 $F_{mp} = \mu N = \mu mg \cos \alpha$, откуда

$$a_1 = g(\sin \alpha + \mu \cos \alpha). \tag{2}$$

В наивысшей точке подъема $\upsilon = 0$, $\upsilon = \upsilon_0 - a_1 t_1$, откуда

$$t_1 = \frac{v_0}{a_1},\tag{3}$$

где t_1 — промежуток времени, в течение которого тело поднимается по плоскости. Подставляя (2) в (3), получим $t_1 = \frac{\upsilon_0}{g(\sin\alpha + \mu\cos\alpha)}$.

Когда тело скользит вниз, сила трения изменяет направление, и в проекции на ось X основной закон динамики запишется в виде

$$-ma_2 = -mg\sin\alpha + \mu mg\cos\alpha,$$

$$a_2 = g(\sin \alpha - \mu \cos \alpha)$$
.

Скорость тела изменяется по закону $\upsilon = a_2 t_2$. Тело будет иметь скорость

$$\upsilon_0$$
 через промежуток времени t_2 : $t_2=\frac{\upsilon_0}{a_2}=\frac{\upsilon_0}{g(\sin\alpha-\mu\cos\alpha)}$. Окончательно

получим:
$$t = t_1 + t_2$$
; $t = \frac{2\nu_0 \sin \alpha}{g(\sin^2 \alpha - \mu^2 \cos^2 \alpha)}$.

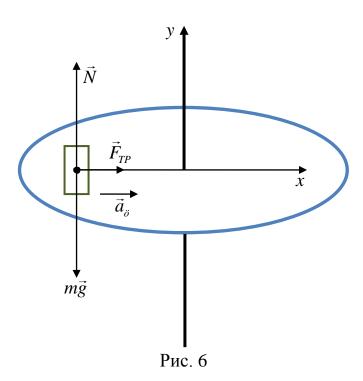
Пример 7.

Горизонтально расположенный диск вращается вокруг проходящей через его центр вертикальной оси со скоростью n=10 об/мин. На каком расстоянии r от центра диска может удержаться лежащее на диске небольшое тело, если коэффициент трения $\mu=0,2$?

Дано: n = 10 об/мин = 0,16 об/с, $\mu = 0,2$.

Найти: г.

Решение.



Рассмотрим силы, действующие на тело, совершающее движение по окружности радиусом r и применим основное уравнение динамики:

$$m\vec{a}_{\ddot{o}} = \vec{N} + \vec{F}_{\dot{o}\,\dot{o}} + m\vec{g}$$
.

В проекциях на ось х

$$ma_u = F_{mp}. (1)$$

В проекциях на ось у

N-mg=0; отсюда N=mg.

Сила трения равна

$$F_{mp} = \mu N = \mu mg , \qquad (2)$$

подставим это значение силы в (1),

$$ma_{u} = \mu mg, \tag{3}$$

где a_{ij} – центростремительное ускорение, которое возникает при движении тела по окружности,

$$a_{\ddot{o}}=rac{\upsilon^2}{R}=\omega^2 R$$
 , где ω — угловая скорость;
$$\omega=2\pi n\,,\; a_{\ddot{o}}=4\pi^2 n^2 R\,. \eqno(4)$$

Подставим выражение (4) в (3), получим

$$4\pi^2 n^2 R = \mu g$$
, откуда

$$R = \frac{\mu g}{4\pi^2 n^2}.$$

Расчет показывает, что радиус $R \le 2.5$ м.

Пример 8.

Два тела массами $m_1=2$ кг и $m_2=3$ кг, двигавшиеся со скоростями $\vec{\upsilon}_1=\left(3\vec{i}+4\vec{j}\right)$ и $\vec{\upsilon}_2=\left(-2\vec{i}+3\vec{j}\right)$ относительно некоторой инерциальной системы отсчета, сталкиваются абсолютно неупруго. Определить их скорость $\vec{\upsilon}$ после удара. Действием других тел пренебречь.

Дано:
$$m_1 = 2$$
 кг, $m_2 = 3$ кг, $\vec{v_1} = (3\vec{i} + 4\vec{j})$, $\vec{v_2} = (-2\vec{i} + 3\vec{j})$.

Найти: й.

Решение.

Физическое явление заключается в абсолютно неупругом взаимодействии двух тел замкнутой системы.

Применим закон сохранения импульса: $\vec{P} = const$.

Таким образом, получаем:

$$m_1 \vec{\upsilon}_1 + m_2 \vec{\upsilon}_2 = (m_1 + m_2) \vec{\upsilon}$$
, отсюда

$$\vec{v} = \frac{m_1}{m_1 + m_2} \vec{v}_1 + \frac{m_2}{m_1 + m_2} \vec{v}_2.$$

Проецируя это векторное уравнение на оси координат, находим компоненты искомого вектора скорости:

$$\begin{split} &\upsilon_{x} = \frac{m_{1}}{m_{1} + m_{2}} \upsilon_{1x} + \frac{m_{2}}{m_{1} + m_{2}} \upsilon_{2x}, \\ &\upsilon_{x} = 0. \\ &\upsilon_{y} = \frac{m_{1}}{m_{1} + m_{2}} \upsilon_{1y} + \frac{m_{2}}{m_{1} + m_{2}} \upsilon_{2y}, \\ &\upsilon_{y} = \frac{17}{5} \text{ M/c}. \end{split}$$

Таким образом, тело будет двигаться вдоль оси OY как единое целое со скоростью $\upsilon = 3,4\,$ м/с.

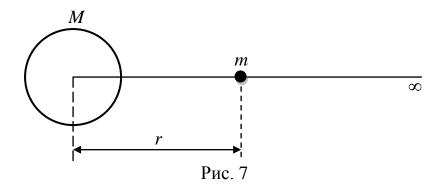
Пример 9.

Определить, какую скорость имеет метеорит массой m на расстоянии $r = 1,5 \cdot 10^{11}$ м от Солнца, если он двигался без начальной скорости из бесконечности к Солнцу (массой M). Влиянием других тел пренебречь.

Дано: $m, M, r = 1, 5 \cdot 10^{11} \text{ м}.$

Найти:υ.

Решение.



В выбранной системе тел действует только консервативная сила тяготения, поэтому применяем закон сохранения механической энергии.

Полная механическая энергия системы в начале взаимодействия равна $E_1=0$; так как $E_{\rm K1}=0$; $E_{\Pi 1}=0$.

Полная механическая энергия системы в конце взаимодействия E_2 , когда метеорит находится на расстоянии r от Солнца, равна

$$E_2 = E_{K2} + E_{\Pi 2}; \ E_{K2} = \frac{mv^2}{2}, \ E_{\Pi 2} = -G\frac{mM}{r}.$$

Таким образом,

$$E_1 = 0$$
; $E_2 = \frac{mv^2}{2} - G\frac{mM}{r}$.

По закону сохранения энергии

$$0 = \frac{mv^2}{2} - G\frac{mM}{r};$$

$$v = \sqrt{\frac{2GM}{r}} = 42,2 \text{ KM/c}.$$

Пример 10.

Для определения коэффициента трения используют установку, представляющую собой вогнутую сферическую поверхность с нанесенными градусными метками.

Тело устанавливают на поверхности сферы так, чтобы радиус, проведенный в его центр тяжести, составлял с вертикалью угол α, после чего тело под действием собственного веса начинает скользить (рис. 8).

Определить коэффициент трения, если сила нормального давления достаточно большая. Угол подъема в момент остановки равен β .

Дано: α, β. Найти: μ. Решение.

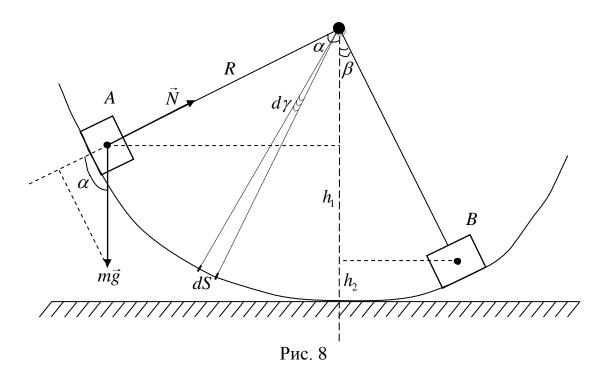
Тело в точке A обладает потенциальной энергией $E_{\Pi 1} = mgh_1$, а в точке B потенциальной энергией $E_{\Pi 2} = mgh_2$.

Убыль потенциальной энергии тела равна работе против силы трения:

$$mgh_1 - mgh_2 = A, (1)$$

где $h_1 = R(1-\cos\alpha), h_2 = R(1-\cos\beta)$, откуда

$$h_1 - h_2 = R(\cos \beta - \cos \alpha). \tag{2}$$



Подставив выражение (2) в (1), получим

$$A = 2mgR\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}.$$
 (3)

Найдем работу против силы трения. Разобьем на элементарные участки dS путь S, считая, что на участке dS сила трения постоянна (рис. 8). Работа этой силы на участке dS равна $dA = F_{TP} \cdot dS = \mu mg \cos \gamma dS = \mu mg R \cos \gamma d\gamma$.

$$A = \int_{-\alpha}^{+\beta} \mu mgR \cos \gamma d\gamma = \mu mgR \int_{-\alpha}^{+\beta} \cos \gamma d\gamma = \mu mgR \left(\sin \beta + \sin \alpha\right) =$$

$$= 2\mu mgR \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}.$$
(4)

Сравнивая (3) и (4), получим

$$\mu = tg \frac{\alpha - \beta}{2}$$
.

1.4. Варианты индивидуальных заданий

Таблица 2

									т аолит	ца ∠
№					Номера	задач				
1	1	98	150	177	204	237	309	340	377	418
2	2	99	151	178	205	238	308	341	376	419
3	3	100	110	179	206	239	307	342	404	420
4	4	95	111	180	207	240	306	343	375	421
5	5	96	112	181	208	241	305	344	374	422
6	6	97	113	182	209	242	304	345	373	430
7	7	89	114	183	210	243	301	346	372	429
8	8	90	115	184	211	244	302	347	371	428
9	9	91	116	185	212	261	303	348	364	427
10	10	92	117	186	207	262	297	349	365	426
11	11	93	118	187	213	254	298	350	366	425
12	12	94	119	153	214	235	299	351	367	424
13	13	83	120	188	215	236	300	313	368	423
14	14	84	130	189	216	255	269	314	369	418
15	15	85	129	190	217	254	270	315	370	419
16	16	86	128	191	218	256	271	316	363	420
17	30	87	106	192	219	257	272	317	355	421
18	31	88	107	193	220	258	273	318	356	422
19	32	69	108	194	221	259	274	319	357	430
20	33	70	109	154	222	260	275	320	358	429
21	17	60	141	155	223	263	276	321	359	428
22	18	61	140	156	224	264	277	322	360	427
23	19	62	139	157	225	265	278	323	361	426
24	20	50	138	158	226	266	279	324	362	425
25	21	51	137	159	227	267	280	325	378	406
26	22	52	136	195	228	245	281	329	379	407
27	23	53	135	196	229	246	282	330	380	408
28	24	54	134	160	223	247	283	331	381	409
29	25	55	133	161	224	248	284	332	382	410
30	26	56	132	162	225	249	285	333	383	411
31	27	57	131	163	226	250	286	334	384	412
32	28	58	121	164	227	251	287	335	385	413
33	29	59	122	165	228	252	288	336	386	414
34	34	63	123	166	230	253	289	337	387	432
35	35	65	124	167	231	254	290	338	388	433
36	36	66	125	168	232	255	291	339	389	434
37	37	67	126	169	233	256	292	326	390	435
38	38	68	127	170	207	257	293	327	391	456
39	39	71	142	171	208	258	294	328	392	416
40	43	72	143	172	209	259	295	313	393	417
41	44	73	144	173	210	260	296	314	394	436
42	45	74	145	174	211	261	297	315	395	435
43	46	75 75	146	175	212	262	298	316	396	434
44	47	76	147	176	204	251	299	317	397	433
45	48	77	148	197	205	252	300	318	398	432
46	34	78	149	198	206	253	310	319	399	431
47	35	79	102	199	219	235	311	343	400	415
48	36	80	103	200	220	236	307	344	401	416
49	37	81	104	201	221	243	308	345	402	417
50	38	82	105	202	222	244	306	346	403	414

РАЗДЕЛ 2. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. РЕЛЯТИВИСТСКАЯ МЕХАНИКА

2.1. Содержание теории

- 1. Момент инерции твердого тела. Теорема Штейнера.
- 2. Основное уравнение динамики вращательного движения.
- 3. Закон сохранения момента импульса.
- 4. Работа внешних сил и кинетическая энергия при вращении твердого тела.
- 5. Релятивистское изменение длин и интервалов времени.
- 6. Релятивистский закон сложения скоростей.
- 7. Релятивистская масса и релятивистский импульс.
- 8. Взаимосвязь массы и энергии.
- 9. Кинетическая энергия релятивистской частицы.
- 10. Связь энергии релятивистской частицы с её импульсом.

2.2. Формулы для решения задач

Динамика вращательного движения твердого тела вокруг неподвижной оси

- 1. Момент силы относительно начала координат $\vec{M} = \begin{bmatrix} \vec{r}\vec{F} \end{bmatrix}$, где \vec{r} радиус-вектор, проведенный в точку приложения силы \vec{F} . Модуль момента силы $M = Fr\sin\alpha = Fl$, где l плечо силы, представляющее собой кратчайшее расстояние от оси вращения до линии действия силы.
 - 2. Момент инерции относительно оси вращения:
- материальной точки $I = mr^2$, где m масса точки; r кратчайшее ее расстояние до оси вращения;
 - системы материальных точек $I = \sum_{i=1}^n m_i r_i^2$, где m_i масса i-й

материальной точки; $r_{\rm i}$ – расстояние от нее до оси вращения; n – число точек;

- момент инерции твердого тела в интегральной форме

$$I = \int r^2(m)dm.$$

- 3. Моменты инерции однородных тел правильной геометрической формы:
- диска (цилиндра) массой m и радиусом R относительно оси, совпадающей с осью диска (цилиндра)

$$I=\frac{1}{2}mR^2;$$

- обруча (тонкостенного цилиндра) массой m и радиусом R относительно оси, совпадающей с осью обруча (цилиндра)

$$I = mR^2$$
;

- шара массой m и радиусом R относительно оси, проходящей через центр шара

$$I=\frac{2}{5}mR^2;$$

- стержня массой m и длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину

$$I = \frac{1}{12}mI^2;$$

- момент инерции однородного тонкого стержня массой m и длиной l, относительно оси, проходящей через конец стержня перпендикулярно стержню $I=\frac{1}{3}ml^2$.

4. Теорема Штейнера.

Момент инерции тела I относительно заданной оси равен

$$I = I_0 + md^2,$$

где I_0 — момент инерции того же тела относительно оси, проходящей через центр масс параллельно заданной оси; m — масса тела; d — расстояние между осями.

5. Момент импульса твердого тела относительно оси вращения:

$$L = \sum_{i=1}^n m_i \upsilon_i r_i = I \omega$$
 , где r_i - кратчайшее расстояние от оси до отдельной частицы

тела; I – момент инерции тела относительно этой оси; ω - его угловая скорость.

6. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси *OZ*:

$$\vec{M} = \frac{d\vec{L}}{dt}$$
; $M_z = I_z \frac{d\omega}{dt} = I_z \varepsilon$,

где ε — угловое ускорение, M_z , I_z — момент силы и момент инерции тела относительно оси OZ.

7. Закон сохранения момента импульса.

Если результирующий момент внешних сил, действующих на систему из n тел, равен нулю $(\sum_{i=1}^n \vec{M}_i = 0)$, ее момент импульса остается постоянным при

взаимодействии этих тел: $\sum_{i=1}^{n} \vec{L}_{i} = const.$

Закон сохранения момента импульса для двух взаимодействующих тел относительно неподвижной оси *OZ*:

$$I_1\omega_1 + I_2\omega_2 = I_1'\omega_1' + I_2'\omega_2',$$

где I_1 , I_2 , ω_1 , ω_2 — моменты инерции и угловые скорости тел до взаимодействия, а $I_1', I_2', \omega_1', \omega_2'$ - те же величины после взаимодействия. В последнем выражении индекс z для простоты опущен.

Закон сохранения момента импульса для одного тела, момент инерции которого изменяется в каком-то процессе:

$$I_1\omega_1=I_2\omega_2$$
,

где индексом 1 и 2 помечены величины моментов инерции относительно оси OZ и угловых скоростей в начале и конце процесса.

8. Работа момента силы при вращении тела вокруг неподвижной оси OZ

$$A = \int\limits_0^{\varphi} M_z d \varphi$$
, где M_z – проекция момента силы на неподвижную ось вращения;

 $\mathrm{d} \varphi$ – элементарный угол поворота.

Работа постоянного момента силы M, вращающего тело вокруг неподвижной оси $A=M_z\cdot \varphi$,

где φ — полный угол поворота тела.

9. Кинетическая энергия вращательного движения относительно неподвижной оси

$$T = \frac{I\omega^2}{2}.$$

Кинетическая энергия тела, катящегося по плоскости:

$$T = \frac{m\upsilon^2}{2} + \frac{I\omega^2}{2},$$

где $\frac{m\upsilon^2}{2}$ — кинетическая энергия его поступательного движения, а $\frac{I\omega^2}{2}$ — кинетическая энергия вращательного движения относительно оси, проходящей через центр масс и неподвижной относительно тела.

10. Связь работы, совершаемой при вращении тела вокруг неподвижной оси, с изменением его кинетической энергии: $A_{12}=\frac{I\omega_2^2}{2}-\frac{I\omega_1^2}{2}$.

Релятивистская механика

Примечание. Во всех задачах этой темы полагается, что система отсчета K' движется со скоростью v_0 вдоль оси x системы отсчета K, при этом начала координат O и O' в начальный момент времени t=t'=0 совпадают, оси x и x' совпадают, а y, y' u z,z' соответственно параллельны; c — скорость света в вакууме.

1. Преобразования Лоренца, позволяющие перейти от системы K' к системе K:

$$x = \frac{x' + \upsilon_0 t'}{\sqrt{1 - \frac{\upsilon_0^2}{c^2}}}, \quad y = y', \quad z = z', \quad t = \frac{t' + \frac{\upsilon_0 x'}{c^2}}{\sqrt{1 - \frac{\upsilon_0^2}{c^2}}}.$$

Обратные преобразования:

$$x' = \frac{x - v_0 t}{\sqrt{1 - \frac{v_0^2}{c^2}}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - \frac{v_0 x}{c^2}}{\sqrt{1 - \frac{v_0^2}{c^2}}}.$$

2. Релятивистское сокращение длины $l = l_0 \sqrt{1 - \left(\frac{\upsilon_0}{c}\right)^2}$, где l_0 — длина

стержня в системе K', относительно которой он покоится. Стержень параллелен оси x'; l- длина стержня, измеренная в системе K, относительно которой он движется со скоростью υ_0 .

3. Релятивистское замедление хода часов $\Delta t = \Delta t_0 / \sqrt{1 - \left(\frac{\upsilon_0}{c}\right)^2}$,

где Δt_0 – интервал времени между двумя событиями, происходящими в одной точке системы K', измеренный по часам этой системы (собственное время движущихся часов); Δt – интервал времени между двумя событиями, измеренный по часам системы K.

4. Релятивистский закон сложения скоростей:

$$\upsilon_{x} = \frac{\upsilon_{x}^{'} + \upsilon_{0}}{1 + \upsilon_{0}\upsilon_{x}^{'}/c^{2}}; \quad \upsilon_{y} = \frac{\upsilon_{y}^{'}\sqrt{1 - \frac{\upsilon_{0}^{2}/c^{2}}{c^{2}}}}{1 + \upsilon_{0}\upsilon_{x}^{'}/c^{2}}; \quad \upsilon_{z} = \frac{\upsilon_{z}^{'}\sqrt{1 - \frac{\upsilon_{0}^{2}/c^{2}}{c^{2}}}}{1 + \upsilon_{0}\upsilon_{x}^{'}/c^{2}},$$

где $\upsilon_{\rm x}'$, $\upsilon_{\rm y}'$, $\upsilon_{\rm z}'$ – компоненты скорости тела в системе K'; $\upsilon_{\rm x}$, $\upsilon_{\rm y}$, $\upsilon_{\rm z}$ – компоненты скорости тела в системе K; υ_0 – скорость системы K' относительно системы K.

Обратные преобразования:

$$v'_{x} = \frac{v_{x} - v_{0}}{1 - v_{0} v_{x}/c^{2}}; \quad v'_{y} = \frac{v_{y} \sqrt{1 - \frac{v_{0}^{2}}{c^{2}}}}{1 - v_{0} v_{x}/c^{2}}; \quad v'_{z} = \frac{v_{z} \sqrt{1 - \frac{v_{0}^{2}}{c^{2}}}}{1 - v_{0} v_{x}/c^{2}}.$$

5. Релятивистская масса

$$m = m_0 / \sqrt{1 - \left(\frac{\upsilon_0^2}{c^2}\right)},$$

где m_0 – масса покоя.

- 6. Релятивистский импульс $\vec{P} = m\vec{\upsilon} = m_0 \vec{\upsilon} / \sqrt{1 \frac{{\upsilon_0}^2}{c^2}}$.
- 7. Полная энергия релятивистской частицы $E = mc^2 = m_0c^2 + T$,

где T – кинетическая энергия частицы; $E_0 = m_0 \cdot c^2$ – ее энергия покоя.

- 8. Связь полной энергии с импульсом релятивистской частицы: $E^2 P^2 c^2 = m_o^2 c^4$.
- 9. Связь кинетической энергии с импульсом релятивистской частицы:

$$P^2c^2 = T(2E_0 + T).$$

10. Связь между массой и энергией:

$$\Delta E = \Delta mc^2$$
.

Изменение массы системы на Δm соответствует изменению энергии системы на ΔE и наоборот.

2.3. Примеры решения задач

Пример 1. Вычислить момент импульса Земли L_0 , обусловленный ее вращением вокруг своей оси. Сравнить его с моментом импульса Земли L, обусловленным ее движением вокруг Солнца. Землю считать однородным шаром, а орбиту Земли — окружностью.

Дано: астрономические величины.

Hайти: L_0 , L.

Решение.

Момент импульса твердого тела при вращении вокруг неподвижной оси $L = I \omega$. Момент инерции шара массой m и радиусом r относительно оси, проходящей через центр масс, равен

$$I_0 = \frac{2}{5}mr^2$$
; $L_0 = I_0\omega_0 = \frac{2}{5}mr^2\frac{2\pi}{T_0}$,

где T_0 - период суточного вращения Земли.

При вращении Земли вокруг Солнца примем радиус орбиты Земли R и учтем, что (см. табличные данные) $R\gg r$. Тогда Землю можно считать материальной точкой, момент инерции которой относительно оси вращения,

проходящей через Солнце, равен
$$I = mR^2$$
; $L = I\omega = mR^2 \frac{2\pi}{T}$,

где T- период годичного вращения Земли вокруг Солнца.

Используя табличные данные, вычисляем:

$$L_0 = \frac{2}{5}mr^2\frac{2\pi}{T_0} = \frac{2}{5}\cdot 5,98\cdot 10^{24}\left(6,37\cdot 10^6\right)^2\frac{6,28}{24\cdot 3600} = 7,05\cdot 10^{33} \text{ kg·m}^2/c;$$

$$L = mR^2\frac{2\pi}{T} = 5,98\cdot 10^{24}\left(1,49\cdot 10^{11}\right)^2\frac{6,28}{365\cdot 24\cdot 3600} = 2,7\cdot 10^{40} \text{ kg·m}^2/c = 3,9\cdot 10^6 L_0.$$

Пример 2. Горизонтально расположенный однородный цилиндр радиусом г вращается без трения вокруг оси, совпадающей с одной из его образующих:

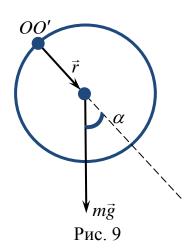
- a) указать положения цилиндра, в которых модуль углового ускорения ε максимален и минимален;
 - δ) найти максимальное и минимальное значения |arepsilon|.

Дано: r.

Hайти: $|\varepsilon|_{\max}$, $|\varepsilon|_{\min}$.

Решение.

На рис. 9 изображен с торца цилиндр, вращающийся вокруг оси OO, перпендикулярной рисунку. На цилиндр действует момент силы тяжести $M = mgr\sin\alpha$, где m - масса, r - радиус цилиндра, α - угол между радиус-вектором \vec{r} , перпендикулярным оси и проведенным в точку приложения силы, и вектором силы $m\vec{g}$.



Основное уравнение вращательного движения применительно к цилиндру запишется так:

$$I\varepsilon = mgr\sin\alpha,\tag{1}$$

где I - момент инерции цилиндра относительно оси $OO^{'}$.

- a) Из (1) следует, что $|\varepsilon|_{\max}$ в моменты, когда ось цилиндра находится на одном уровне с осью вращения $\left(\alpha = \frac{\pi}{2}, \frac{3\pi}{2}\right)$, и $|\varepsilon|_{\min}$ в верхнем и нижнем положениях цилиндра $(\alpha = 0, \pi)$.
- σ) По теореме Штейнера момент инерции цилиндра относительно оси OO равен

$$I = \frac{mr^2}{2} + mr^2 = \frac{3}{2}mr^2. (2)$$

Подставляя (2) в (1), получим

$$\frac{3}{2}mr^2\varepsilon = mgr\sin\alpha$$
, или $\varepsilon = \frac{2g}{3r}\sin\alpha$,

отсюда
$$|\varepsilon|_{\max} = \frac{2g}{3r}, \ |\varepsilon|_{\min} = 0.$$

Пример 3.

Сплошной однородный диск радиусом R=10 см, имевший начальную угловую скорость $\omega_0=50$ рад/с (относительно оси, перпендикулярной плоскости диска и проходящей через центр масс), кладут основанием на горизонтальную поверхность. Сколько оборотов сделает диск до остановки, если коэффициент трения между основанием диска и горизонтальной

поверхностью $\mu = 0,1$ и не зависит от угловой скорости вращения диска? Считать, что вращение происходит вокруг неподвижной оси.

Дано: $\omega_0 = 50$ рад/с; R = 10 см = 0,1 м; $\mu = 0,1$.

Найти: *N* . *Решение*.

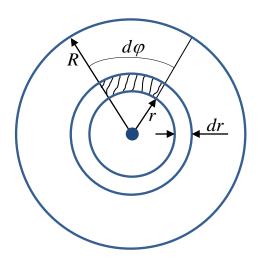


Рис. 10

Физическое явление заключается во вращательном движении твердого тела относительно неподвижной оси в присутствии силы трения. Применим основное уравнение вращательного движения твердого тела

$$\vec{M} = I\vec{\varepsilon} \,. \tag{1}$$

где M - суммарный момент сил трения, действующих на диск, I - момент инерции диска, ε - угловое ускорение.

$$I = \frac{1}{2}mR^2$$
, $m = \pi R^2 h \rho$ - масса диска, h - его толщина, ρ - плотность

материала диска.

Сила трения приложена к каждому участку диска, и так как эти участки находятся на различных расстояниях от оси вращения, то и моменты сил трения, приложенных к этим участкам, различны. Для нахождения M разделим диск на достаточно узкие кольца (рис. 10), а каждое кольцо двумя соседними радиусами, образующими достаточно малый угол $d\varphi$, разделим на малые элементы. (На рис 10 один такой элемент заштрихован).

Сила трения, действующая на выделенный элемент, равна

 $dF_{TP} = \mu \cdot dm \cdot g = \mu d\varphi r dr h \rho g.$

Момент этой силы трения

 $dM = rdF_{TP} = \mu \rho ghr^2 dr d\varphi.$

Интегрируя по углу φ в пределах от 0 до 2π и по r от 0 до R, получаем суммарный момент сил трения:

$$M = \int_{0}^{2\pi} \int_{0}^{R} \mu \rho g h r^{2} dr d\varphi = \mu \rho g h 2\pi \frac{R^{3}}{3} = 2\mu R g \frac{m}{3}.$$

Подставляя это значение M в уравнение движения (1), находим угловое ускорение диска

$$\varepsilon = \frac{4\mu g}{3R} \, .$$

Так как движение диска равнозамедленное, то его угловая скорость меняется по закону $\omega = \omega_0 - \varepsilon t$, причем в конце $\omega = 0$.

Отсюда находим время движения
$$t = \frac{\omega_0}{\varepsilon} = \frac{3R\omega_0}{4\mu g}$$
, $t \approx 3,75$ с.

Подставляя это значение времени в закон движения $\varphi = \omega_0 t - \frac{\varepsilon t^2}{2}$ и учитывая, что $\varphi = 2\pi N$, получаем

$$N = \frac{3R\omega_0^2}{16\pi\mu g}.$$

Отсюда вычисляем $N \approx 15$.

Решим теперь эту задачу, используя закон сохранения энергии.

В физическую систему включим два тела: диск и Землю. Система этих тел замкнута, и можно было бы применять закон сохранения энергии в механике, но в системе действуют неконсервативные силы трения. Изменение полной механической энергии равно работе против неконсервативных сил: $\Delta E = A$, т.е.

$$\frac{I\omega_0^2}{2} = A;$$

$$A = \int_0^{\varphi} Md\varphi = \int_0^{\varphi} \frac{2\mu Rgm}{3} d\varphi = \frac{2\mu Rgm\varphi}{3}.$$
(2)

Подставляя это значение работы в уравнение (1) и учитывая, что $\varphi = 2\pi N$, находим

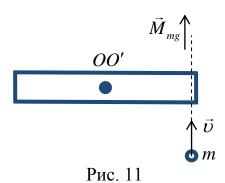
$$\frac{I\omega_0^2}{2} = \frac{2\mu Rgm\phi}{3} = \frac{2\mu Rgm2\pi N}{3},$$

$$N = \frac{3R\omega_0^2}{16\pi\mu g}, \ N = 15.$$

Пример 4. Горизонтально расположенный деревянный стержень массой M=0,8 кг и длиной l=1,8 м может вращаться вокруг вертикальной оси, проходящей через его середину. В конец стержня попадает и застревает в нем пуля массой m=3 г, летящая перпендикулярно оси и стержню со скоростью $\upsilon=50\,$ м/с. Определить угловую скорость, с которой начнет вращаться стержень.

Дано: M = 0.8 кг, l = 1.8 м, m = 3 г, $\upsilon = 50$ м/с.

Hайти: ω .



На рис. 11 дан вид сверху на систему тел стержень – пуля.

Момент импульса системы сохраняется, если проекция на ось вращения результирующего момента внешних сил $M_{\it \'{a}\'{a}\'{a}\'{o}\'{a}\'{o}}$, действующих на систему, равен нулю. В нашем случае в момент удара

$$\vec{M}_{\rm ai\,a\phi\,i} = \vec{M}_{\rm o\,\bar{o}} + \vec{M}_{\rm Mg} + \vec{M}_{\rm mg}. \label{eq:mg_mg}$$

Будем считать, что $\vec{M}_{\delta\delta}$ пренебрежимо мал. Момент \vec{M}_{Mg} относительно OO равен нулю, так как плечо момента силы равно нулю. Момент $\vec{M}_{mg} = [\vec{r}, m\vec{g}\,]$ и перпендикулярен OO (рис. 11), так что $M_{mgoo} = 0$. Для системы стержень - пуля, таким образом, $\vec{M}_{\hat{a}\hat{t}\,\hat{a}\!\phi\,\hat{t}} = 0$, и можно записать закон сохранения момента импульса

$$m\upsilon\frac{l}{2} = \left(\frac{Ml^2}{12} + m\left(\frac{l}{2}\right)^2\right)\omega,\tag{1}$$

где $m\upsilon\frac{l}{2}$ - момент импульса пули относительно оси OO, $\frac{Ml^2}{12}$ - момент инерции стержня относительно OO, $\frac{ml^2}{4}$ - момент инерции застрявшей пули, которая может считаться материальной точкой, относительно OO.

Из (1) угловая скорость стержня будет равна

$$\omega = \frac{6m\upsilon}{(M+3m)l} = 0,62$$
 рад/с.

Пример 5. Расположенный горизонтально однородный круглый цилиндр массой M=10 кг вращается без трения вокруг своей оси под действием груза массой m=1 кг, прикрепленного к легкой нерастяжимой нити, намотанной на цилиндр. Найти кинетическую энергию системы E_k спустя t=3,5 с после начала движения.

Дано: M = 10 кг; m = 1 кг; t = 3.5 с.

Hайти: E_{ν} .

Кинетическая энергия системы складывается из кинетической энергии поступательного движения груза и кинетической энергии вращательного движения цилиндра относительно закрепленной оси вращения

$$E_k = \frac{mv^2}{2} + \frac{I\omega^2}{2},\tag{1}$$

где

$$I = \frac{MR^2}{2} \tag{2}$$

- момент инерции цилиндра относительно этой оси, ω - угловая скорость вращения цилиндра, υ - линейная скорость точек на поверхности цилиндра и скорость груза.

Угловая и линейная скорости связаны соотношением

$$\omega = \frac{\upsilon}{R}.\tag{3}$$

Подставляя (3) и (2) в (1), получим

$$E_{k} = \frac{mv^{2}}{2} + \frac{MR^{2}}{2} \frac{1}{2} \left(\frac{v}{R}\right)^{2} = \frac{mv^{2}}{2} + \frac{Mv^{2}}{4}.$$
 (4)

Линейные скорость и ускорение связаны соотношением

$$\upsilon = at. \tag{5}$$

Найдем линейное ускорение из системы уравнений

$$\begin{cases} a = \varepsilon R, \\ I\varepsilon = TR, \\ ma = mg - T, \end{cases}$$

где ε - угловое ускорение цилиндра, T - сила натяжения нити.

Решив систему относительно $\it a$, получим

$$a = \frac{mg}{m + \frac{M}{2}}. (6)$$

Подставив (6) и (5) в (4), окончательно получим

$$E_k = \frac{m^2}{2m+M} (gt)^2 = 102$$
 Дж.

Пример 6.

Собственное время жизни нестабильной элементарной частицы, называемой мюоном, $\tau_0=2,2$ мкс. Определить время жизни τ мюона в системе отсчета, в которой он проходит от рождения до распада путь l=30 км. Считая движение мюона прямолинейным и равномерным, найти его скорость υ_0 в этой системе.

Дано:
$$\tau_0 = 2, 2 \cdot 10^{-6}$$
 c; $l = 3 \cdot 10^4$ м; $c = 3 \cdot 10^8$ м/c.
Найти: τ , ν_0 .

Пусть мюон покоится в системе отсчета K' , которая движется относительно системы K со скоростью $\upsilon_{\scriptscriptstyle 0}$. Тогда его время жизни в системе K равно

$$\tau = \frac{\tau_0}{\sqrt{1 - \left(\frac{\upsilon_0}{c}\right)^2}} \,. \tag{1}$$

В системе K частица проходит путь, равный

$$l = \nu_0 \cdot \tau \,. \tag{2}$$

Исключая из системы уравнений (1) и (2) υ_0 , получим

$$\tau = \sqrt{\tau_0^2 + \left(\frac{l}{c}\right)^2} = 10^{-4} \text{ c.}$$

Подставив полученное выражение в (2), получим скорость частицы

$$\upsilon_0 = \frac{l}{\tau} = \frac{c}{\sqrt{1 + \left(\frac{c\tau_0}{l}\right)^2}} = 0,99976 \ c,$$
где c – скорость света.

Пример 7.

Две одинаковые частицы движутся в некоторой системе отсчета K навстречу друг другу с одинаковой по модулю скоростью $\upsilon = 0,5$ с, где c - скорость света. Определить модуль скорости, с которой каждая из частиц движется относительно другой частицы.

Дано: v = 0.5 с.

Найти: υ' .

Решение.



Рис. 12

Обозначим в системе K скорости частиц (рис. 12):

$$v_{1x} = v; v_{1y} = 0; v_{1z} = 0;$$

 $v_{2x} = -v; v_{2y} = 0; v_{2z} = 0.$ (1)

Свяжем систему K' с первой частицей, тогда $\upsilon_{_{1x}}'=0$.

Скорость движения K' относительно K будет равна $\upsilon_0 = \upsilon = 0,5$ с.

Релятивистский закон сложения скоростей при переходе из системы K в систему K':

$$v_{x}' = \frac{v_{x} - v_{0}}{1 - \frac{v_{0}v_{x}}{c^{2}}}; v_{y}' = \frac{v_{y}\sqrt{1 - \left(\frac{v_{0}}{c}\right)^{2}}}{1 - \frac{v_{0}v_{x}}{c^{2}}}; v_{z}' = \frac{v_{z}\sqrt{1 - \left(\frac{v_{0}}{c}\right)^{2}}}{1 - \frac{v_{0}v_{x}}{c^{2}}}.$$
 (2)

Подставляя (1) в (2), получим, что $\upsilon'_{1y} = \upsilon'_{2y} = \upsilon'_{1z} = \upsilon'_{2z} = 0$.

$$v'_{2x} = \frac{v_{2x} - v_0}{1 - \frac{v_0 v_{2x}}{c^2}} = \frac{-v - v}{1 - \frac{(v)(-v)}{c^2}} = -\frac{2v}{1 + \frac{v^2}{c^2}} = -0.8c,$$

$$v_{2x}' = v_2' = -0.8c$$
.

Если связать систему отсчета со второй частицей и повторить все рассуждения, то получим

$$v'_{1x} = v'_1 = \frac{2v}{1 + \frac{v^2}{c^2}} = 0.8c.$$

Пример 8.

При какой скорости υ тела погрешность при вычислении его импульса по ньютоновской формуле $p = m_0 \upsilon$ не превышает 1 %?

Дано: $\delta_{\text{max}} = 0.01$.

Найти: υ.

Решение.

Обозначим ньютоновский импульс через

$$p_1 = m_0 \upsilon, \tag{1}$$

а истинный импульс релятивистской частицы через

$$p_2 = m\upsilon = \frac{m_0 \upsilon}{\sqrt{1 - \left(\frac{\upsilon}{c}\right)^2}}.$$
 (2)

$$\delta = \frac{p_2 - p_1}{p_2} = 1 - \frac{p_1}{p_2}.$$
 (3)

 $\delta = \frac{p_2-p_1}{p_2} = 1 - \frac{p_1}{p_2} \,.$ Подставляя (1) и (2) в (3), получим $\upsilon = c\sqrt{\delta \left(2-\delta\right)} = 0{,}14$ с.

Расчет получен для $\delta_{\text{max}} = 0.01$. Следовательно, $\upsilon \le 0.14$ с.

Пример 9.

Релятивистская частица с массой покоя m_0 и кинетической энергией Tналетает на покоящуюся частицу с той же массой покоя. Найти массу покоя и скорость составной частицы, образовавшейся в результате соударения.

Дано: $m_{01} = m_{02} = m_0$; $T_1 = T$; $T_2 = 0$.

Hайти: M_0 , и.

Законы сохранения импульса и энергии являются фундаментальными и выполняются всегда без ограничений. Запишем закон сохранения импульса при соударении частиц:

$$p_1 = \frac{M_0}{\sqrt{1 - \left(\frac{u}{c}\right)^2}} \cdot u, \tag{1}$$

где p_1 - импульс налетающей частицы.

Связь импульса и энергии налетающей частицы:

$$p_1^2 c^2 = T(T + 2E_0). (2)$$

Выразим p_1 из (2) и подставим в (1):

$$\frac{\sqrt{T(T+2E_0)}}{c} = \frac{M_0 u}{\sqrt{1-\left(\frac{u}{c}\right)^2}}.$$
 (3)

Закон сохранения энергии при соударении частиц:

$$mc^2+m_0c^2=Mc^2$$
, или $\frac{m_0}{\sqrt{1-\left(rac{\upsilon}{c}
ight)^2}}+m_0=rac{M_0}{\sqrt{1-\left(rac{u}{c}
ight)^2}}$, откуда

$$m_0 \left(\frac{1}{\sqrt{1 - \left(\frac{\upsilon}{c}\right)^2}} + 1 \right) = \frac{M_0}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}.$$
 (4)

энергия первой частицы: $T = mc^2 - m_0c^2$, Кинетическая или

$$T = m_0 c^2 \left(\frac{1}{\sqrt{1 - \left(\frac{\upsilon}{c} \right)^2}} - 1 \right)$$
, откуда $\frac{1}{\sqrt{1 - \left(\frac{\upsilon}{c} \right)^2}} = \frac{T}{E_0} + 1$.

Подставим полученное выражение в (4), получим

$$\frac{T}{E_0} + 2 = \frac{M_0}{m_0 \sqrt{1 - \left(\frac{u}{c}\right)^2}}.$$
 (5)

$$\frac{T}{E_0} + 2 = \frac{M_0}{m_0 \sqrt{1 - \left(\frac{u}{c}\right)^2}}.$$
Выразив из (3)
$$\frac{1}{\sqrt{1 - \left(\frac{u}{c}\right)^2}} = \frac{\sqrt{T(T + 2E_0)}}{M_0 uc}$$
 и подставив полученное

выражение в (5), получим

$$u = c\sqrt{\frac{T}{T + 2E_0}} \,. \tag{6}$$

Решив систему уравнений (5) и (6) относительно M_0 , запишем

$$M_{\scriptscriptstyle 0} = \frac{\sqrt{2m_{\scriptscriptstyle 0} \left(T + 2E_{\scriptscriptstyle 0}\right)}}{c}\,.$$

Пример 10.

Пучок релятивистских частиц с кинетической энергией T каждая падает на поглощающую мишень. Сила тока в пучке I, заряд и масса покоя каждой частицы e и m_0 . Найти силу давления пучка на мишень.

Дано: T , I , e , m_0 .

Hайти: F .

Решение.

Давление на поверхность $P = \frac{F}{S} = \frac{\Delta p}{\Delta t \cdot S}$, где F - сила давления, S - площадь поверхности, Δp - суммарный импульс частиц, падающих на поверхность за время Δt . То есть сила давления на поверхность $F = \frac{\Delta p}{\Delta t}$ равна суммарному импульсу частиц, падающих на поверхность в единицу времени.

Обозначим через n концентрацию частиц в пучке. Тогда $P=p_1\cdot n\cdot \upsilon,$ где p_1 - импульс одной частицы, υ - ее скорость.

Сила давления

$$F = PS = p_1 \cdot n \cdot S \cdot \upsilon. \tag{1}$$

Сила тока в пучке

$$I = jS = envS. (2)$$

Учтем связь импульса и кинетической энергии релятивистской частицы:

$$p_1^2 c^2 = T(T + 2E_0). (3)$$

Решая совместно систему уравнений (1) - (3), получим

$$F = \frac{I}{e} \frac{\sqrt{T(T + 2m_0c^2)}}{c}.$$

Пример 11.

Полная энергия частицы равна $10m_0c^2$. Чему равна ее скорость υ ?

Дано: $E = 10m_0c^2$.

Найти: υ.

Решение.

Полная энергия частицы

$$E = \frac{m_0 c^2}{\sqrt{1 - \left(\frac{\upsilon}{c}\right)^2}} = \frac{E_0}{\sqrt{1 - \left(\frac{\upsilon}{c}\right)^2}}; \ \left(\frac{\upsilon}{c}\right)^2 = 1 - \left(\frac{E_0}{E}\right)^2, \ \text{или } \upsilon = c\sqrt{1 - \left(\frac{E_0}{E}\right)^2};$$

$$\upsilon = c \frac{\sqrt{99}}{100} = 0,995 c.$$

2.4. Варианты индивидуальных заданий

Таблица 3

									таол	ица 3
N_{Ω}					Номер	а задач				
1	4	20	35	45	64	73	130	137	179	229
2	6	23	36	53	57	75	131	138	180	258
3	9	29	37	51	60	76	132	139	181	257
4	10	30	38	41	55	77	133	140	182	256
5	11	21	39	56	74	124	134	141	183	255
6	12	31	40	57	78	125	135	142	185	254
7	13	32	56	79	92	126	136	143	186	253
8	8	14	33	60	80	127	137	144	220	252
9	15	22	34	61	81	128	138	145	221	251
10	16	29	35	57	82	129	130	139	222	250
11	1	24	36	59	73	83	131	140	223	249
12	2	34	52	62	74	84	132	141	224	248
13	5	38	53	63	75	85	133	142	225	247
14	7	42	56	64	76	86	144	202	206	226
15	17	35	65	77	87	106	146	203	207	227
16	3	24	66	78	88	107	134	187	208	228
17	18	48	67	79	89	108	135	184	188	209
18	20	51	68	80	92	109	136	189	201	210
19	8	38	69	81	94	110	147	190	202	211
20	21	39	70	82	95	111	148	191	203	212
21	22	40	71	83	90	112	149	192	204	213
22	23	41	72	84	93	113	150	193	206	214
23	1	19	52	85	96	114	151	194	208	215
24	2	24	53	86	97	115	154	195	209	216
25	12	25	58	87	91	116	155	196	210	217
26	3	26	50	72	98	117	156	197	211	221
27	4	27	51	73	99	118	157	198	212	222
28	5	28	48	74	100	119	152	199	213	223
29	6	29	54	80	108	120	158	200	207	224
30	7	42	65	84	109	121	159	205	224	230
31	8	40	58	88	110	122	160	187	225	231
32	9	41	59	89	111	123	153	188	226	246
33	10	43	60	90	112	124	161	189	230	247
34	11	44	61	91	113	125	162	190	231	248
35	12	45	52	72	114	126	163	191	232	249
36	13	46	52	77	117	129	143	164	192	233
37	10	23	48	78	118	128	146	167	193	234
38	11	24	50	79	119	127	147	165	194	235
39	12	25	52	80	120	126	148	168	195	236
40	13	26	54	81	121	125	149	169	196	233
41	10	27	30	59	73	124	150	170	197	238
42	11	28	31	60	74	123	151	166	198	240
43	12	29	32	61	75	122	152	171	199	241
44	13	30	33	62	107	121	153	173	200	242
45	14	34	39	63	101	120	154	174	214	243
46	14	24	55	66	102	119	155	175	215	239
47	15	25	53	67	103	118	156	172	216	244
48	16	26	51	68	104	117	157	176	217	245
49	17	27	47	69	105	116	158	177	218	246
50	18	28	49	70	106	115	159	178	219	227

РАЗДЕЛ 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

3.1. Содержание теории

- 1. Идеальный газ. Уравнение Менделеева-Клапейрона.
- 2. Уравнение МКТ для давления. Закон равнораспределения энергии молекул по степеням свободы.
- 3. Распределение Максвелла.
- 4. Барометрическая формула.
- 5. Работа газа. Первое начало термодинамики.
- 6. Внутренняя энергия.
- 7. Теплоемкость идеального газа.
- 8. Адиабатический процесс.
- 9. Энтропия идеального газа.
- 10. Цикл Карно.

3.2. Формулы для решения задач

Законы идеальных газов. Молекулярно-кинетическая теория газов

1. Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона)

$$PV = \frac{m}{M}RT$$
, или $PV = vRT$,

где m — масса газа; M — его молярная масса; R — универсальная газовая постоянная; $\nu = m/M$ — количество молей вещества; T — абсолютная температура.

2. Закон Дальтона:

$$P=\sum_{i=1}^n P_i\;,$$

где P — давление смеси газов; $P_{\rm i}$ — парциальное давление i-й компоненты смеси; n — число компонент смеси.

3. Молярная масса смеси газов

$$M = (m_1 + m_2 + \ldots + m_n)/(v_1 + v_2 + \ldots + v_n),$$

где m_i — масса i-й компоненты смеси; v_i — количество вещества i-й компоненты смеси; n — число компонент смеси.

4. Количество вещества

$$v = m/M = N/N_A$$

где N — число элементов системы (молекул, атомов, ионов и т.п.); $N_{\rm A}$ — число Авогадро; m — масса газа; M — молярная масса.

5. Масса одной молекулы вещества

$$m_0 = M/N_A$$
.

6. Количество вещества смеси

$$v = v_1 + v_2 + \ldots + v_k = \frac{\mathbf{m}_1}{M_1} + \frac{\mathbf{m}_2}{M_2} + \ldots + \frac{\mathbf{m}_n}{M_n},$$

где v_i , m_i — количество вещества и масса i-й компоненты смеси; n — число компонентов смеси.

7. Концентрация частиц однородной системы

$$n=\frac{N}{V}$$
,

где N — число частиц системы; V — ее объем.

8. Основное уравнение кинетической теории газов

$$P = \frac{2}{3} n \langle \varepsilon_{\Pi} \rangle,$$

где P — давление газа; n — его концентрация; $<\varepsilon_{\Pi}>$ — средняя кинетическая энергия поступательного движения молекулы.

9. Средняя кинетическая энергия, приходящаяся на одну степень свободы молекулы:

$$\langle \varepsilon_1 \rangle = \frac{1}{2} kT$$
,

где k — постоянная Больцмана; T — абсолютная температура.

10. Средняя кинетическая энергия молекулы

$$\langle \varepsilon \rangle = \frac{i}{2} kT$$
,

где i — число степеней свободы молекулы.

11. Средняя кинетическая энергия поступательного движения молекулы

$$\langle \varepsilon_{\Pi} \rangle = \frac{3}{2}kT.$$

12. Зависимость давления газа от концентрации молекул и температуры P = nkT.

Законы распределения

1. Закон Максвелла для распределения молекул идеального газа по модулю скорости:

$$f(\upsilon) = \frac{dN_{\upsilon}}{Nd\upsilon} = \left(\frac{m_0}{2\pi kT}\right)^{3/2} e^{-\frac{m_0\upsilon^2}{2kT}} \cdot 4\pi\upsilon^2,$$

где N — общее число молекул, m_0 - масса молекулы, dN_v — число молекул, скорости которых находятся в интервале (v, v+dv); f(v) является функцией распределения молекул по модулю скорости и определяет относительное число молекул со скоростями в единичном интервале (v, v+dv).

- 2. Характерные скорости молекул:
- наиболее вероятная

$$\upsilon_B = \sqrt{2kT/m_0} = \sqrt{2RT/M} ,$$

где m_0 – масса одной молекулы;

- средняя квадратичная

$$u_{CK} = \sqrt{\langle v^2 \rangle}, \text{ где } \langle v^2 \rangle = \int_0^\infty v^2 f(v) dv,$$

$$u_{CK} = \sqrt{3kT/m_0} = \sqrt{3RT/M};$$

- средняя арифметическая

$$<\upsilon>=\int_{0}^{\infty}\upsilon f(\upsilon)d\upsilon=\sqrt{8kT/(\pi m_{0})}=\sqrt{8RT/(\pi M)}$$
.

3. Закон Максвелла для распределения молекул идеального газа по относительной скорости:

$$f(u) = \frac{dN_u}{Ndu} = \frac{4}{\sqrt{\pi}}u^2e^{-u^2},$$

где dN_u — число молекул, скорости которых находятся в интервале (u, u+du); $u = \upsilon/\upsilon_B$ — относительная скорость, равная отношению скорости молекулы υ к наиболее вероятной скорости υ_B ; f(u) — функция распределения по относительным скоростям движения молекул.

Рекомендации к решению задач на распределение Максвелла

Из п.3 следует, что число молекул, имеющих скорости в интервале (u_1,u_2) , равно $\Delta N(u) = \int_{u_1}^{u_2} Nf(u) du$. Однако, если высокая точность результата не обязательна, можно обойтись без интегрирования.

Легко убедиться в том, что вид распределения f(u) по относительной скорости не зависит от температуры T и массы m_0 молекул газа.

Поэтому зависимость f(u) может быть представлена в виде таблицы независимо от температуры и природы газа.

Рассмотрим два примера нахождения ΔN - для узкого и широкого интервала скоростей (u_1,u_2) .

A) Если интервал скоростей узок, т.е. для $\Delta u = u_2 - u_1$ выполняется неравенство $\Delta u \ll u$, то соотношение п.3 может быть представлено в виде

$$\frac{\Delta N}{N\Delta u} \approx f(u_1)$$
, где $f(u_1) = \frac{4}{\sqrt{\pi}} \cdot e^{-u_1^2} \cdot u_1^2$; $u_1 = v_1/v_B$.

При решении задач, в которых рассматривается узкий интервал скоростей, нужно использовать табличные значения функции f(u) из табл. 4. Графически решение интерпретировано рис. 13. Относительное число молекул, скорости которых лежат в узком интервале, приблизительно равно площади заштрихованного прямоугольника: $\frac{\Delta N}{N} \approx \Delta u \cdot f(u_1)$.

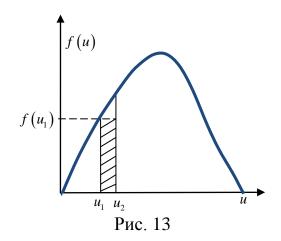


Таблица 4

и	f(u)	и	f(u)	и	f(u)
0	0	0,9	0,81	1,8	0,29
0,1	0,02	1,0	0,83	1,9	0,22
0,2	0,09	1,1	0,82	2,0	0,16
0,3	0,18	1,2	0,78	2,1	0,12
0,4	0,31	1,3	0,71	2,2	0,09
0,5	0,44	1,4	0,63	2,3	0,06
0,6	0,57	1,5	0,54	2,4	0,04
0,7	0,68	1,6	0,46	2,5	0,03
0,8	0,76	1,7	0,36	-	-

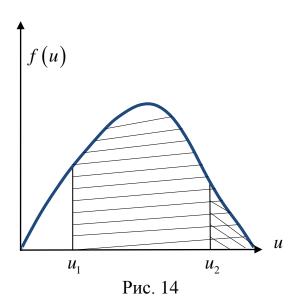
Б) Если интервал скоростей $\Delta u = u_2 - u_1$ широк $(\Delta u \ge u)$, поступают следующим образом. Доля молекул $\frac{N_1}{N}$, относительные скорости которых лежат в интервале от $u_1 < u < \infty$, соответствует интегралу

$$\frac{N_1}{N} = \int_{u_1}^{\infty} f(u) du.$$

Этот интеграл на рис. 14 равен площади под кривой распределения, ограниченной слева вертикалью, соответствующей u_1 , и горизонтальной осью.

Интегрирование можно заменить табличным значением $\frac{N_1}{N}$, взятым из табл. 5 и соответствующим интервалу скоростей (u_1,∞) . Аналогично, зная u_2 , из этой же таблицы определим $\frac{N_2}{N}$. Относительное число молекул, скорости которых лежат в интервале Δu , найдем по формуле $\frac{\Delta N}{N} = \frac{N_2}{N} - \frac{N_1}{N}$. Этому

значению $\frac{\Delta N}{N}$ на рис. 14 отвечает заштрихованная площадь под кривой распределения меду значениями скоростей u_1 и u_2 .



$u_{\rm i}$	$N_{ m i}/N$	$u_{\rm i}$	$N_{ m i}/N$
0	1,000	0,8	0,734
0,2	0,994	1,0	0,572
0,4	0,957	1,25	0,374
0,5	0,918	1,5	0,213
0,6	0,868	2,0	0,046
0,7	0,806	2,5	0,0057

4. Распределение частиц во внешнем потенциальном поле (распределение Больцмана)

$$n = n_0 \cdot e^{-U/(kT)},$$

где n — концентрация частиц; U — их потенциальная энергия в силовом поле; n_0 — концентрация частиц в областях, где U = 0; k — постоянная Больцмана; T — абсолютная температура.

5. Барометрическая формула (распределение давления идеального газа в однородном поле силы тяжести при постоянной температуре)

$$P = P_0 \cdot e^{-m_0 gh/(kT)}$$
 или $P = P_0 \cdot e^{-Mgh/(RT)}$,

где P — давление газа на высоте h; P_0 — давление газа на высоте h=0; M — молярная масса; m_0 — масса молекулы; R — универсальная газовая постоянная; g — ускорение свободного падения; T — температура газа.

Основы термодинамики

- 1. Связь молярной C и удельной c теплоемкостей вещества $C = M \cdot c$, где M молярная масса вещества.
- 2. Молярные теплоемкости газа при постоянном объеме и постоянном давлении

$$C_{\rm v} = iR/2$$
; $C_{\rm p} = (i+2)R/2$,

где i — число степеней свободы; R — универсальная газовая постоянная.

3. Уравнение Майера для молярных теплоемкостей

$$C_{P}-C_{V}=R$$
.

4. Внутренняя энергия идеального газа U

$$U = N \langle \varepsilon \rangle$$
, или $U = \frac{i}{2} \nu RT$,

где $\langle \varepsilon \rangle$ — средняя кинетическая энергия молекулы; N — число молекул газа; ν — количество вещества.

5. Работа при изменении объема газа

$$A = \int_{V_1}^{V_2} P(V) dV,$$

где P – давление, V_1 – начальный объем газа; V_2 – его конечный объем.

Работа газа при изопроцессах:

- изобарическом (P = const):

$$A = P(V_2 - V_1) = P \cdot \Delta V,$$

- изотермическом (T = const):

$$A = v RT \ln \left(\frac{V_2}{V_1} \right),$$

- адиабатическом:

$$\mathbf{A} = -\Delta U = \frac{i}{2} \nu R \left(\mathbf{T}_1 - \mathbf{T}_2 \right) \text{ или } \mathbf{A} = \frac{R \mathbf{T}_1}{\left(\gamma - 1 \right)} \nu \left[1 - \left(\frac{\mathbf{V}_1}{\mathbf{V}_2} \right)^{\gamma - 1} \right],$$

где T_1 — начальная температура газа; T_2 — его конечная температура; $\gamma = \frac{C_p}{C_{cc}} = \frac{i+2}{i}$ — показатель адиабаты.

6. Уравнение Пуассона (уравнение адиабаты)

$$PV^{\gamma} = const$$
, или $TV^{\gamma-1} = const$, или $TP^{\frac{1-\gamma}{\gamma}} = const$.

7. Первое начало термодинамики в конечном процессе:

$$Q = \Delta U + A$$
,

где Q — количество теплоты, сообщенное системе; ΔU — изменение ее внутренней энергии; A — работа, совершаемая системой против внешних сил.

Первое начало термодинамики на бесконечно малом участке процесса: $\delta Q = dU + \delta A = vC_v dT + PdV$.

8. Первое начало термодинамики в изопроцессах:

- изобарическом (P = const):

$$Q = \Delta U + A = \nu C_v \Delta T + \nu R \Delta T = \nu C_p \Delta T,$$

- изохорическом (V = const):

так как
$$A = 0$$
, то $Q = \Delta U = \nu C_v \Delta T$,

- изотермическом (T = const):

так как
$$\Delta U = 0$$
, то $Q = A = \nu RT \ln \begin{pmatrix} V_2 \\ V_1 \end{pmatrix}$,

- адиабатическом (Q = 0):

$$A = -\Delta U = -\nu C_v \Delta T$$
.

9. Термический коэффициент полезного действия (КПД) цикла произвольной тепловой машины

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1},$$

где A — работа за цикл; Q_1 — количество теплоты, полученное рабочим телом (газом) от нагревателя; Q_2 — количество теплоты, переданное рабочим телом охладителю.

10. КПД идеальной тепловой машины, работающей по циклу Карно:

$$\eta = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1} ,$$

где T_1 – температура нагревателя; T_2 – температура охладителя.

11. Для тепловой машины (холодильная машина), работающей по обратному циклу Карно, холодильный коэффициент $\varepsilon = \frac{Q_2}{A'}$, где Q_2 — теплота, отводимая от охлаждаемого тела, A' - работа внешних сил за цикл.

Также справедливо соотношение
$$\frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$
.

12. Изменение энтропии системы в равновесном процессе

$$\Delta S_{12} = \int_{1}^{2} \frac{\delta Q}{T} = \int_{1}^{2} \frac{dU + \delta A}{T} = \int_{1}^{2} \frac{i}{2} vRdT + PdV \frac{i}{2} dU + \frac{i}{2} vRdT + \frac{i}{2}$$

13. Изменение энтропии системы в равновесном процессе в параметрах Р и V

$$\Delta S_{12} = \nu C_{\nu} \ln \frac{P_2}{P_1} + \nu C_{p} \ln \frac{V_2}{V_1}.$$

3.3. Примеры решения задач

Пример 1.

Найти максимально возможную температуру идеального газа с числом молей ν в процессе $P=P_0-\alpha V^2$, где P_0 , α - положительные постоянные.

Дано: v; $P = P_0 - \alpha V^2$; P_0 , $\alpha = const$.

Hайти: T_{MAX} .

Решение.

Подставим в уравнение Менделеева-Клапейрона $PV = \nu RT$ выражение для давления $\left(P_0 - \alpha V^2\right)V = \nu RT$ и выразим отсюда температуру

$$T = \frac{\left(P_0 - \alpha V^2\right)V}{VR}.\tag{1}$$

Продифференцируем выражение (1) по V и приравняем его к нулю:

$$\frac{dT}{dV} = \frac{P_0 - 3\alpha V^2}{vR} = 0.$$

Решение последнего уравнения имеет вид $V_{\scriptscriptstyle 1} = \sqrt{\frac{P_{\scriptscriptstyle 0}}{3\alpha}}$.

Подставив его в (1), получим выражение для максимально возможной температуры газа, участвующего в этом процессе:

$$T_{MAX} = \frac{P_0 V_1 - \alpha V_1^3}{\nu R} = \frac{1}{\nu R} \frac{2}{3} P_0 \sqrt{\frac{P_0}{3\alpha}}.$$

Пример 2.

Теплоизолированный закрытый сосуд с газообразным азотом при температуре t=27 °C движется со скоростью $\upsilon=100$ м/с. Как и на сколько процентов изменится давление газа после внезапной остановки сосуда?

Дано: T=300 K; $\upsilon=100$ м/c; $M=28\cdot 10^{-3}$ кг/моль; i=5; V=const. Найти: $\frac{\Delta P}{R}$.

Решение.

Давление газа до торможения найдем из его уравнения состояния

$$P = nkT. (1)$$

В процессе остановки сосуда кинетическая энергия молекул, которая равна

$$E_{k} = \frac{mv^{2}}{2} = m_{0}N\frac{v^{2}}{2} = m_{0}vN_{A}\frac{v^{2}}{2},$$
 (2)

где m - масса газа, m_0 - масса одной молекулы, N - общее число молекул газа, переходит во внутреннюю энергию газа, в результате чего его температура, а следовательно, и давление, повышаются. Обозначим давление и температуру газа после остановки P_0 , T_0 соответственно. Тогда $P_0 = nkT_0$.

Изменение внутренней энергии газа в результате остановки

$$\Delta U = v \frac{i}{2} R \Delta T = v \frac{i}{2} R \left(T_0 - T \right). \tag{3}$$

Так как сосуд теплоизолирован, то $E_k=\Delta U$; решая совместно систему уравнений (2) и (3), получим $T_0=\frac{M\upsilon^2}{iR}+T$, где $M=m_0N_A$ - молярная масса газа.

Окончательно получаем

$$\frac{\Delta P}{P} = \frac{\Delta T}{T} = \frac{T_0 - T}{T} = \frac{M v^2}{iRT} = 1,2 \%.$$

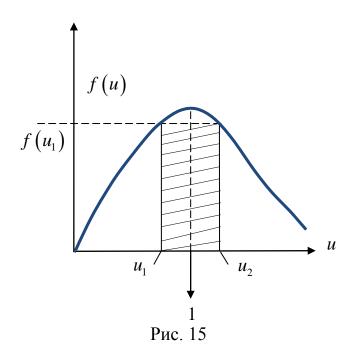
Пример 3.

Найти относительное число молекул газа, скорости которых отличаются не более чем на $\frac{\delta \upsilon}{\upsilon_a}$ = 1,00 % от значения наиболее вероятной скорости.

Дано:
$$\frac{\delta \upsilon}{\upsilon_a} = 0.01$$
.

$$H$$
айти: $\frac{\Delta N}{N}$.

Решение.



Для идеального газа в равновесном состоянии относительное число молекул, относительные скорости которых находятся в малом интервале (u, u + du), находится по формуле

$$\frac{dN}{N} = f(u)du, \qquad (1)$$

где f(u) - функция распределения по относительным скоростям движения молекул. В условии задачи требуется определить $\frac{\Delta N}{N}$ в интервале от $u_1 = \frac{\upsilon_1}{\upsilon_a} = \frac{\upsilon_a - 0.01\upsilon_a}{\upsilon_a} = 0.99$ до $u_2 = \frac{\upsilon_2}{\upsilon_a} = \frac{\upsilon_a + 0.01\upsilon_a}{\upsilon_a} = 1.01$.

Величину $\frac{\Delta N}{N}$ можно найти, проинтегрировав выражение (1).

Если допустима погрешность ответа в несколько процентов, можно воспользоваться табл. 4. Так как в нашем случае с достаточной степенью точности можно считать, что $u_1 \approx 1,0$, а также $\Delta u = 0,02$, то $\Delta u \ll u$, и приближенно можно записать (рис. 15)

$$\frac{\Delta N}{N} = f\left(u_1\right)\Delta u \ . \tag{2}$$

По табл. 4 для $u_1=1$ находим $f(u_1)=0.83.$ Следовательно, $\frac{\Delta N}{N}=0.83\cdot 0.02=0.0166=1.7~\%~.$

Пример 4.

Пусть K_0 - отношение концентрации молекул водорода к концентрации молекул азота вблизи поверхности Земли, а K - соответствующее отношение на высоте h = 3000 м. Найти отношение K/K_0 при T = 280 K, полагая, что температура и ускорение свободного падения не зависят от высоты.

 \mathcal{L} ано: $M_1=2\cdot 10^{-3}$ кг/моль; $M_2=28\cdot 10^{-3}$ кг/моль; $h_0=0$ м; $h=3\cdot 10^3$ м; T=280 K; g=10 м/с 2 .

Найти: K/K_0 .

Решение.

От барометрической формулы $P = P_0 e^{-\frac{Mgh}{RT}}$ с помощью уравнения P = nkT можно перейти к распределению концентрации молекул однородного газа по высоте

$$n = n_0 e^{-\frac{Mgh}{RT}},\tag{1}$$

где n, n_0 - концентрации молекул на высоте h и у поверхности Земли соответственно.

Запишем уравнение (1) для водорода и азота соответственно

$$n_1 = n_{01} e^{-\frac{M_1 g h}{RT}}, (2)$$

$$n_2 = n_{02}e^{-\frac{M_2gh}{RT}}. (3)$$

Разделим уравнение (2) на (3) почленно, получим

$$\frac{n_1}{n_2} = \frac{n_{01}}{n_{02}} e^{\frac{(M_2 - M_1)gh}{RT}}.$$

Учтем, что
$$\frac{n_1}{n_2}=K$$
 , а $\frac{n_{01}}{n_{02}}=K_0$. Тогда $\frac{K}{K_0}=e^{\frac{(M_2-M_1)gh}{RT}}=1,4$.

Пример 5.

Один моль некоторого идеального газа изобарически нагрели на $\Delta T = 72$ K, сообщив ему количество тепла Q = 1,6 кДж. Найти совершенную газом работу, приращение его внутренней энергии и величину $\gamma = \frac{c_P}{C_{tr}}$.

Дано: v = 1 моль; P = const; $\Delta T = 72$ К; $Q = 1, 6 \cdot 10^3$ Дж.

Найти: A, ΔU , γ .

Решение.

Работа газа при изобарическом процессе

$$A = P\Delta V = \nu R\Delta T = 600$$
 Дж.

Из первого начала термодинамики найдем приращение его внутренней энергии $\Delta U = Q - A = 1000$ Дж.

Учитывая, что $Q = \nu C_{p} \Delta T$, а $\Delta U = \nu C_{V} \Delta T$, показатель адиабаты найдем

как
$$\gamma = \frac{C_p}{C_V} = \frac{Q}{\Delta U} = 1,6.$$

Пример 6.

Водород, находившийся при нормальных условиях в закрытом сосуде объемом V = 5,0 л, охладили на 55 К. Найти приращение внутренней энергии газа.

Дано: $M=2\cdot 10^{-3}$ кг/моль; $P_0=1,01\cdot 10^5$ Па; $T_0=273$ К; $V=5\cdot 10^{-3}$ м³; $\Delta T=-55$ К; i=5 .

Hайти: ΔU .

Решение:

Так как сосуд закрыт, то процесс изохорный, V = const.

Приращение внутренней энергии идеального газа равно

$$\Delta U = v \frac{i}{2} R \Delta T . \tag{1}$$

Число молей найдем из уравнения состояния, записанного для нормальных условий:

$$P_0V = \nu RT_0. (2)$$

Решая совместно систему уравнений (1) и (2), получим:

$$\Delta U = \frac{i}{2} \frac{P_0 V \Delta T}{T_0} = -0.25$$
 кДж.

Пример 7.

Вычислить удельные теплоемкости c_V и c_P для газовой смеси, состоящей из 7,0 г азота и 20 г аргона. Газы считать идеальными.

 \mathcal{A} ано: $m_1=7\cdot 10^{-3}$ кг; $M_1=28\cdot 10^{-3}$ кг/моль; $i_1=5;$ $m_2=2\cdot 10^{-2}$ кг; $M_2=40\cdot 10^{-3}$ кг/моль; $i_2=3.$

Найти: c_P , c_V .

Решение.

Количество теплоты, полученное смесью идеальных газов, равно сумме количеств теплот, полученных каждой компонентой смеси в отдельности:

$$Q = Q_1 + Q_2. \tag{1}$$

Распишем выражение (1) через удельные теплоемкости для изохорического процесса:

$$(m_1 + m_2)c_V \Delta T = m_1 c_{V_1} \Delta T + m_2 c_{V_2} \Delta T,$$
 (2)

где ΔT - приращение температуры смеси; $c_{V_1},\,c_{V_2}$ - удельные теплоемкости при постоянном объеме азота и аргона соответственно.

Учтем, что
$$c_V = \frac{C_V}{M} = \frac{i}{2} \frac{R}{M}$$
.

Тогда из (1) можно выразить c_v смеси

$$c_V = rac{rac{m_1}{M_1}rac{i_1}{2} + rac{m_2}{M_2}rac{i_2}{2}}{m_1 + m_2}R = 420$$
 Дж/(кг·К).

Повторив все приведенные выше рассуждения для изобарического процесса, получим

$$\begin{split} & \left(m_1 + m_2\right) c_P \Delta T = m_1 c_{P_1} \Delta T + m_2 c_{P_2} \Delta T \; ; \; c_P = \frac{C_P}{M} = \frac{i+2}{2} \frac{R}{M} . . \\ & c_P = \frac{\frac{m_1}{M_1} \frac{i_1 + 2}{2} + \frac{m_2}{M_2} \frac{i_2 + 2}{2}}{m_1 + m_2} R = 650 \; \text{Дж/(кг·K)}. \end{split}$$

Пример 8.

Один моль кислорода, находившегося при температуре $T_0 = 290~{
m K}$, адиабатически сжали так, что его давление возросло в $k = 10~{
m pas}$. Найти:

- а) температуру газа после сжатия;
- б) работу, которая была совершена над газом.

Дано:
$$\nu = 1$$
 моль; $M = 32 \cdot 10^{-3}$ кг/моль; $i = 5$; $T_0 = 290$ K; $\frac{P}{P_0} = k = 10$.

Найти: a) T ; б) A'.

Решение.

Так как процесс адиабатный, то Q = 0.

Уравнение Пуассона, описывающее состояние идеального газа при адиабатическом процессе, в координатах (P,V) имеет вид

$$PV^{\gamma} = const. \tag{1}$$

Запишем это уравнение в координатах (T,P). Для этого выразим из уравнения Менделеева-Клапейрона $PV = \nu RT$ объем V и подставим его в (1):

$$P\left(\frac{vRT}{P}\right)^{\gamma} = const$$
, или $T^{\gamma} \cdot P^{1-\gamma} = const$; окончательно получим

$$T \cdot P^{\frac{1-\gamma}{\gamma}} = const.$$

$$a) T_0 \cdot P_0^{\frac{1-\gamma}{\gamma}} = T \cdot P^{\frac{1-\gamma}{\gamma}}; T = T_0 \left(\frac{P_0}{P}\right)^{\frac{1-\gamma}{\gamma}}; T = T_0 K^{\frac{\gamma-1}{\gamma}} = 560 \text{ K};$$

б) работа газа при адиабатическом процессе равна

$$\begin{split} A &= -\Delta U = -v\frac{i}{2}R\Delta T = v\frac{i}{2}R\left(T_0 - T\right) = v\frac{i}{2}RT_0\left(1 - \left(\frac{P_0}{P}\right)^{\frac{1-\gamma}{\gamma}}\right) = \\ &= v\frac{i}{2}RT_0\left(1 - K^{\frac{\gamma-1}{\gamma}}\right). \end{split}$$

Работа, совершенная над газом:

$$A' = -A = v \frac{i}{2} RT_0 \left(K^{\frac{\gamma - 1}{\gamma}} - 1 \right) = 1,6$$
 кДж.

Пример 9.

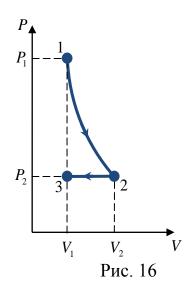
Гелий массой m=1,7 г адиабатически расширили в n=3 раза и затем изобарически сжали до первоначального объема. Найти приращение энтропии газа в этом процессе. Газ считать идеальным.

Дано:
$$M = 4 \cdot 10^{-3}$$
 кг/моль; $m = 1, 7 \cdot 10^{-3}$ кг; $i = 3$; **1-2**: $Q = 0$; $\frac{V_2}{V_1} = n = 3$;

2-3: P = const; $V_3 = V_1$.

Найти: ΔS_{13} .

Решение.



Энтропия является функцией состояния и не зависит от характера процесса при переходе из одного состояния в другое, а определяется только параметрами этих состояний. На рис. 16 процесс 1-3 изображен графически. Выразим энтропию процесса 1-3 в параметрах (P,V):

$$dS = \frac{\delta Q}{T} = \frac{dU + \delta A}{T};$$

$$\Delta S_{13} = \int_{1}^{3} \frac{dU}{T} + \int_{1}^{3} \frac{\delta A}{T} = \int_{1}^{3} \frac{v \frac{i}{2} R dT}{T} + \int_{1}^{3} \frac{P dV}{T}.$$
 (1)

Продифференцируем уравнение Менделеева-Клапейрона vRT = PV: vRdT = PdV + Vdp и подставим в первое слагаемое выражения (1).

Учтем также, что $T = \frac{PV}{\nu R}$. Тогда первое слагаемое в выражении (1) имеет

вид

$$\frac{i}{2} \int_{1}^{3} \frac{vRdT}{T} = \frac{i}{2} vR \int_{1}^{3} \frac{PdV + VdP}{PV}.$$
 (2)

Второе слагаемое в (1) представим в виде

$$\int_{1}^{3} \frac{PdV}{T} = \int_{1}^{3} vR \frac{dV}{V}.$$
 (3)

Подставив (2) и (3) в (1), получим

$$\Delta S_{13} = \nu R \frac{i}{2} \int_{1}^{3} \frac{dP}{P} + \nu R \left(\frac{i}{2} + 1 \right) \int_{1}^{3} \frac{dV}{V} = \nu R \frac{i}{2} \ln \frac{P_{3}}{P_{1}} + \nu R \frac{i+2}{2} \ln \frac{V_{3}}{V_{1}}.$$

В нашем случае $V_3 = V_1$ и $\ln \frac{V_3}{V_1} = 0$.

Отношение $\frac{P_3}{P_1}$ найдем из уравнения адиабаты в параметрах P и V:

$$P_1V_1^\gamma=P_2V_2^\gamma$$
; учитывая, что $P_2=P_3$, получим $\dfrac{P_3}{P_1}=\left(\dfrac{V_1}{V_2}\right)^\gamma=n^{-\gamma}$.

Находим
$$\Delta S_{13} = \nu R \frac{i}{2} \ln \left(n^{-\gamma} \right) = -\frac{m}{M} R \frac{i+2}{2} \ln n = -10$$
 Дж/К.

Пример 10.

Тепловая машина работает по обратному циклу Карно (холодильная машина) в интервале температур $T_1 = 300~{\rm K}$ и $T_2 = 270~{\rm K}$. Рабочим телом служит азот, масса которого $m = 0,2~{\rm kr}$. Найти холодильный коэффициент ε , количество теплоты, отбираемое за цикл от охлаждаемого тела, и работу внешних сил за цикл, если отношение максимального объема рабочего тела к минимальному b = 5.

Дано: $T_{\rm l}=300\,$ K; $T_{\rm l}=270\,$ K; $M=28\cdot 10^{-3}\,$ кг/моль; $m=0,2\,$ кг; i=5; $\frac{V_{\rm max}}{V_{\rm min}}=b=5\,.$

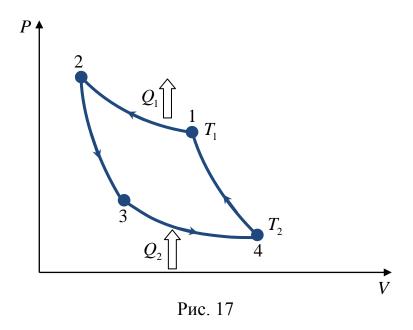
Найти: ε , Q_2 , A'.

Решение.

Цикл Карно, по которому работает холодильная машина, изображен на рис 17. Здесь 4-1 и 2-3 – адиабаты, 1-2 и 3-4 – изотермы.

Изотермическое сжатие рабочего тела происходит при более высокой температуре T_1 . При этом, так как $\Delta U_{12}=0$, рабочее тело отдает в окружающую среду количество теплоты $Q_1=\left|Q_{12}\right|$.

На участке 3-4 происходит при более низкой температуре T_2 изотермическое расширение рабочего тела, при этом от охлаждаемого тела отбирается количество теплоты Q_2 .



Согласно первому началу термодинамики, $\Delta U_{34} = 0$ и искомое количество теплоты равно

$$Q_2 = Q_{34} = \frac{m}{M} R T_2 \ln \frac{V_4}{V_3}. \tag{1}$$

Из рис. 17 видно, что за цикл $V_{\rm max} = V_4$, $V_{\rm min} = V_2$, т. е.

$$\frac{V_4}{V_2} = b. (2)$$

Второе и третье состояния лежат на одной адиабате в интервале температур от T_1 до T_2 . Запишем с учетом этого уравнение Пуассона для процесса 2-3:

 $T_1V_2^{\gamma-1} = T_2V_3^{\gamma-1}$, откуда

$$\frac{V_2}{V_3} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma - 1}}.$$
 (3)

Перемножив почленно уравнения (2) и (3), получим

$$\frac{V_4}{V_3} = b \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma - 1}}.$$

Подставим последнее выражение в (1), получим

$$Q_2 = \frac{m}{M}RT\left(\ln b + \frac{1}{\gamma - 1}\ln\frac{T_2}{T_1}\right),\,$$

где $\gamma = \frac{i+2}{i}$ - коэффициент Пуассона (или показатель адиабаты). Расчеты дают $Q_2 = 21,6$ кДж.

Найдем работу внешних сил за цикл.

Для обратимого цикла Карно всегда справедливо соотношение $\frac{Q_1-Q_2}{Q_1}=\frac{T_1-T_2}{T_2}$, или

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \,. \tag{4}$$

Согласно первому началу термодинамики, работа газа за цикл $A = -Q_1 + Q_2$.

Работа внешних сил за цикл

$$A' = -A = Q_1 - Q_2. (5)$$

Чтобы найти A', выразим Q_1 из уравнения (4) и подставим его в (5):

$$A' = Q_2 \left(\frac{T_1}{T_2} - 1\right) = 2,4$$
 кДж. (6)

Холодильную машину характеризуют обычно холодильным коэффициентом

$$\varepsilon = \frac{Q_2}{A'}.\tag{7}$$

В нашем случае, так как холодильная машина работает по обратному циклу Карно, подставляя (6) в (7), получим

$$\varepsilon = \frac{Q_2}{A'} = \frac{T_2}{T_1 - T_2} = 9.$$

3.4. Варианты индивидуальных заданий

Таблица 6

10					TT				1 401	ица о
<u>№</u>	10	2.4	5 0	07	Номеря		101	104	210	241
1	13	34	59	97	145	148	191	194	219	241
2	14	35	63	98	146	149	192	195	220	242
3	15	36	64	99	147	150	193	196	221	243
4	16	37	65	100	120	151	168	197	222	244
5	17	38	66	101	119	152	169	198	223	245
6	1	39	67	102	118	153	170	199	224	246
7	2	40	68	103	117	154	171	200	225	247
8	3	41	69	104	116	155	172	201	226	248
9	4	42	70	105	115	156	173	202	227	249
10	5	43	71	106	114	157	174	203	228	250
11	6	44	72	107	113	158	175	204	229	251
12	7	45	73	108	112	159	176	205	230	252
13	8	46	74	109	111	160	177	206	231	253
14	9	47	75	110	147	161	178	207	232	254
15	10	48	76	97	146	162	179	208	233	255
16	11	49	77	98	145	163	180	209	234	256
17	12	50	78	99	144	164	181	210	235	257
18	13	51	60	100	143	165	182	211	236	258
19	14	52	79	101	142	166	183	212	237	259
20	15	53	80	102	141	167	184	213	238	260
21	16	54	81	103	140	148	185	214	239	241
22	17	55	82	104	139	149	186	215	240	242
23	18	56	83	105	138	150	187	216	219	243
24	19	57	84	106	137	151	188	217	220	244
25	20	58	85	107	136	152	189	218	221	245
26	21	34	86	108	135	153	190	194	222	246
27	22	35	87	109	134	154	191	195	223	247
28	23	36	88	110	133	155	192	196	224	248
29	24	37	89	101	132	156	193	197	225	249
30	25	38	90	102	131	157	168	198	226	250
31	26	39	61	103	130	158	169	199	227	251
32	27	40	91	104	129	159	170	200	228	252
33	28	41	92	105	128	160	171	201	229	253
34	29	42	62	106	127	161	172	202	230	254
35	30	43	93	107	126	162	173	203	231	255
36	31	44	94	108	125	163	174	204	232	256
37	32	45	95	109	124	164	175	205	233	257
38	33	46	96	110	123	165	176	206	234	258
39	1	47	65	97	122	166	177	207	235	259
40	2	48	66	98	121	167	178	208	236	260
41	3	49	67	99	120	148	179	209	237	241
42	4	50	68	100	119	149	180	210	238	242
43	5	51	69	101	118	150	181	211	239	243
44	6	52	70	102	117	151	182	212	240	244
45	7	53	71	103	116	152	183	213	219	245
46	8	54	72	104	115	153	184	214	220	246
47	9	55	91	105	114	154	185	215	221	247
48	10	56	92	106	113	155	186	216	222	248
49	11	57	94	107	112	156	187	217	223	249
50	12	58	95	108	111	157	188	218	224	250
		•	•				•		•	

ПРИЛОЖЕНИЕ

Таблица П1 Некоторые астрономические величины

Радиус Земли	6,37·10 ⁶ м
Масса Земли	5,98·10 ²⁴ кг
Радиус Солнца	6,95·10 ⁸ м
Масса Солнца	1,98·10 ³⁰ кг
Радиус Луны	1,74·10 ⁶ м
Масса Луны	$7,33\cdot10^{22}$ кг
Среднее расстояние от Солнца до Земли	1,49·10 ¹¹ м
Среднее расстояние от Луны до Земли	3,84·10 ⁸ м
Период вращения Луны вокруг Земли	27,3 сут

Таблица П2 Основные физические константы

Ускорение свободного падения	$g = 9.81 \text{ m/c}^2$
Гравитационная постоянная	$G = 6.67 \cdot 10^{-11} \mathrm{m}^3/(\kappa \Gamma \cdot c^2)$
Число Авогадро	$N_{\rm A} = 6.02 \cdot 10^{23} {\rm моль}^{-1}$
Универсальная газовая постоянная	R = 8.31 Дж/(моль·К)
Постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
Заряд электрона	$e = -1,60 \cdot 10^{-19} \text{ K}$ л
Масса покоя электрона	$m = 9,1 \cdot 10^{-31} \text{ кг}$
Заряд протона	$q = 1,60 \cdot 10^{-19} \text{ K}$ л
Масса покоя протона	$m_p = 1,67 \cdot 10^{-27} \text{ кг}$
Скорость света в вакууме	$c = 3.00 \cdot 10^8 \text{ m/c}$
Электрическая постоянная	$\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/M$
Постоянная Планка	$h = 6.63 \cdot 10^{-34} \text{Дж} \cdot \text{c}$
Атомная единица массы	$1 \text{ a.e.м} = 1,660 \cdot 10^{-27} \text{ кг}$

Таблица ПЗ

Rb 37 San 40 Nb 41 Mo 40 40 Nb 41 Mo 40 65,38 LAANN 12,51 Ge 33 AS AS
ПРОИЕТИЙ САИДРИЙ ГАДОЛИНИЙ ТЕРБИЙ ДИСПРОЗИЙ ГОЛЬНИЙ ЗРБИЙ ТУ 22 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 96 Es 99 Fm 100 I

Таблица П4

Свойства некоторых твёрдых тел

Вещество	Плотность, $\times 10^3 \text{ кг/м}^3$	Температура плавления, °C	Удельная теплоёмкость, Дж/(кг·К)	Удельная теплота плавления, $\times 10^5 \text{Дж}$
Алюминий	2,70	659	896	3,22
Медь	8,93	1100	395	1,76
Свинец	11,3	327	126	0,226
Серебро	10,5	960	234	0,88
Сталь	7,7	1400	460	0,8
Чугун	7,88	1150	503	1,2
Лёд	0,9	0	2100	3,35

Таблица П5

Свойства некоторых жидкостей

		Удельная	Удельная теплота
Жидкость	Плотность,	теплоёмкость	парообразования,
	$\times 10^3 \text{ kg/m}^3$	при 20 °C,	МДж/кг
		Дж/(кг-К)	
Вода	1,00	4190	2,26
Керосин	0,80	2140	0,22
Бензин	0,79	2040	0,250
Ртуть	13,6	138	0,285
Спирт	0,80	2510	0,924

Таблица П6

Свойства некоторых газов

Таблица П7 Масса и энергия покоя некоторых элементарных частиц

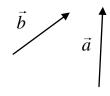
Портина	m	0	E_0		
Частица	×10 ⁻²⁷ , кг	а.е.м.	×10 ⁻¹⁰ , Дж	МэВ	
Электрон	$9,11\cdot10^{-4}$	0,00055	8,16.10 ⁻⁴	0,511	
Протон	1,672	1,00728	1,50.10	938	
Нейтрон	1,675	1,00867	1,5	939	
α-частица	6,64	4,00149	5,96	3733	
Нейтральный π-мезон	0,241	0,14498	0,216	135	

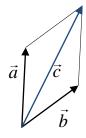
Таблица П8 Приставки для образования десятичных кратных и дольных единиц

Прис	Приставка		Прист	гавка	
Наимено-	Обозна-	Множи-	Наимено-	Обозна-	Множи-
вание	чение	тель	вание	чение	тель
тера	T	10^{12}	милли	M	10^{-3}
гига	Γ	10^{9}	микро	МК	10^{-6}
мега	M	10^{6}	нано	Н	10 ⁻⁹
кило	К	10^{3}	пико	П	10 ⁻¹²
санти	c	10 ⁻²	фемто	ф	10^{-15}

Некоторые сведения из математики

- 1. Скаляры и векторы
- a) Сложение векторов $\vec{c} = \vec{a} + \vec{b}$.





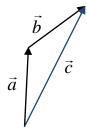


Рис. П1

б) Вычитание векторов.

Вычитание вектора \vec{b} из вектора \vec{a} можно заменить сложением \vec{a} с $\left(-\vec{b}\right)$: $\vec{d} = \vec{a} - \vec{b} = \vec{a} + \left(-\vec{b}\right)$.

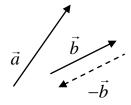
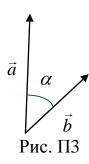
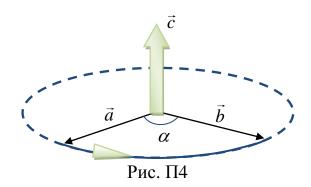


Рис. П2

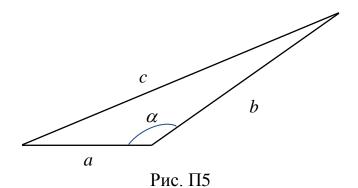
в) Скалярное произведение двух векторов $\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \alpha$.



г) Векторное произведение двух векторов $\vec{c} = \left[\vec{a} \vec{b} \right]$, $c = a \cdot b \cdot \sin \alpha$. Направление вектора \vec{c} находится по правилу буравчика (рис. П4).



2. Формулы алгебры и тригонометрии Теорема косинусов (рис. П5): $c^2 = a^2 + b^2 - 2ab\cos\alpha$,



 $\sin 2\alpha = 2\sin \alpha \cos \alpha, \ \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha,$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha, \ \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta.$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2},$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}.$$

Корни приведенного квадратного уравнения $x^2 + px + q = 0$:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$$

$$\ln a + \ln b = \ln(ab), \ \ln a - \ln b = lm\left(\frac{a}{b}\right).$$

3. Формулы дифференциального и интегрального исчислений:

$$\frac{d}{dx}(x^n) = nx^{n-1},$$

$$\frac{d}{dx}(e^x) = e^x,$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x},$$

$$\frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2},$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax},$$

$$\frac{d}{dx}(a^x) = a^x \ln|a|,$$

$$(uv)' = u'v + v'u,$$

$$(\frac{u}{v})' = \frac{u'v - v'u}{v^2},$$

$$\frac{d(\cos x)}{dx} = -\sin x,$$

$$\frac{d(\sin x)}{dx} = \cos x,$$

$$\int \frac{dx}{x} = \ln|x|, \quad *^n$$

$$\int \frac{dx}{x^2} = -\frac{1}{x},$$

$$\int x^n dx = \frac{x^{n+1}}{n+1},$$

$$\int \sin x dx = -\cos x,$$

$$\int \cos x dx = \sin x$$

$$\int e^x dx = e^x.$$

*) Здесь и далее постоянная интегрирования опускается.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Савельев И.В. Курс общей физики: В 3 т. М.: Наука, 2000. Т.1. 350 с.
 - 2. Трофимова Т.И. Курс физики. М.: Высшая школа, 1998. 542 с.
- 3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2000. 718 с.
- 4. Методическое пособие к решению задач по курсу общей физики в системе РИТМ. Ч.1. /Г.В. Куповых, В.Г. Сапогин, А.В. Третьякова, В.А. Фатеева. Таганрог: Изд-во ТРТУ, 2002. 100 с.
- 5. Чертов А.Г., Воробьев А.А. Задачник по физике. М.: Высшая школа, 1997. 544 с.
- 6. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука, $1990.-400~\rm c.$
- 7. Трофимова Т.И. Сборник задач по курсу физики: Учебное пособие для студентов втузов. М.: Высшая школа, 1991. 303 с.

Болдырев Антон Сергеевич Гатько Людмила Евстафьевна Редин Александр Александрович Фатеева Валентина Афанасьевна

Учебно-методическое пособие для выполнения индивидуального задания по дисциплине Физика

Часть 1

Ответственный за выпуск Гатько Л.Е. Редактор Проценко И.А. Корректор Селезнева Н.И.

ЛР №020565 от 23.06.1997 г. Подписано к печати Формат 60x841/16. Бумага офсетная. Офсетная печать.

Усл. п. л. -4,0. . Уч-изд. л . -3,8. Заказ N_2 Тираж 100 экз.

«C»

Издательство ЮФУ ГСП 17А, Таганрог, Некрасовский, 44

Типография ЮФУ ГСП 17А, Таганрог, Некрасовский, 44