МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное

Федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"

Учебно-методическое пособие

для выполнения индивидуального задания

по дисциплине

Физика

Часть 3

Ростов-на-Дону Издательство Южного федерального университета 2014 Гатько Л.Е., Редин А.А., Фатеева В.В. Учебно-методическое пособие для выполнения индивидуального задания по дисциплине «Физика». Ч. 3. – Ростов-на-Дону: Изд-во ЮФУ, 2014. – 61 с.

В пособии приводятся общие рекомендации к выполнению самостоятельной работы по дисциплине «Физика» по разделам: волновая оптика, квантовая оптика, основы квантовой механики и физики атома. Также приводятся содержание теории (перечислены темы, по которым сформированы индивидуальные задания), основные законы и соотношения, примеры решения задач и таблицы вариантов индивидуальных заданий.

Пособие предназначено для студентов дневного отделения, обучающихся по всем инженерным специальностям.

Разд. 1 и 2 подготовлены Гатько Л.Е. и Рединым А.А., разд. 3 – Фатеевой В.А. и Рединым А.А.

Табл. 4. Ил. 14. Библиогр.: 7 назв.

Рецензент: Куповых Г.В., д-р физ.-мат. наук, профессор кафедры физики ЮФУ.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	4
Общие методические указания	5
РАЗДЕЛ 1. ВОЛНОВАЯ ОПТИКА	6
1.1. Содержание теории	6
1.2. Формулы для решения задач	6
1.3. Примеры решения задач	12
1.4. Варианты индивидуальных заданий	23
РАЗДЕЛ 2. КВАНТОВАЯ ОПТИКА. ВОЛНОВЫЕ СВОЙСТВА	
ЧАСТИЦ	24
2.1. Содержание теории	24
2.2. Формулы для решения задач	24
2.3. Примеры решения задач	29
2.4. Варианты индивидуальных заданий	37
РАЗДЕЛ 3. ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ И ФИЗИКИ	
ATOMA	38
3.1. Содержание теории	38
3.2. Формулы для решения задач	38
3.3. Примеры решения задач	44
3.4. Варианты индивидуальных заданий	53
ПРИЛОЖЕНИЕ	54
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	60

ПРЕДИСЛОВИЕ

Для достижения высокого уровня научно-практической подготовки будущих специалистов необходимо обеспечить возможность получения студентами глубоких фундаментальных знаний и организовать их самостоятельную работу, чтобы повысить качество обучения, развить творческие способности студентов, их стремление к непрерывному приобретению новых знаний, а также учесть приоритетность интересов студентов в самоопределении и самореализации.

Третья часть настоящего пособия призвана помочь студентам выполнить индивидуальное задание по курсу физики в 3 семестре. Здесь рассматриваемый материал разбит на три раздела, включающих волновую оптику, квантовую оптику, основы квантовой механики и физики атома.

Каждый раздел имеет следующую последовательность изложения материала: содержание теории (перечень основных тем в количестве 7 – 10); основные формулы для решения задач; примеры решения задач. *Номера примеров решения задач соответствуют номерам в перечне основных тем*. Далее следует таблица вариантов предлагаемых индивидуальных заданий, объем и состав которых могут изменяться преподавателем.

Тексты задач представлены в электронном виде на сайте кафедры под номерами, соответствующими номерам в таблице вариантов.

При решении задач мы пользовались теми же подходами и методами, которые были изложены в I и II частях пособия.

В конце пособия приведено приложение, в котором содержатся табличные данные и физические постоянные.

Заканчивается пособие библиографическим списком, содержащим ссылки на сборники задач, на основе которых формировался банк задач для самостоятельной работы студентов.

Все замечания о проделанной работе авторы примут с благодарностью.

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Инструкция по выполнению внеаудиторной самостоятельной работы

Физическая задача — это модель физического явления с некоторыми известными и неизвестными физическими величинами, характеризующими это явление.

Решить физическую задачу — это значит восстановить неизвестные связи и определить искомые физические величины.

Задачи по физике весьма разнообразны, и дать единые рекомендации для их решения невозможно. Поэтому мы попытаемся выделить те общие положения, выполнение которых будет полезным во всех разделах изучаемой программы.

- 1. Прежде чем приступить к решению задач выбранного раздела, необходимо повторить теорию, используя курс лекций и учебник.
- 2. Прочитать внимательно условие задачи, четко представить себе характер описанного явления.
- 3. Произвести аккуратную запись заданных величин и их размеров, выделить неизвестные.
- 4. Дать схематический рисунок (чертеж, схему и др.), поясняющий содержание задачи.
- 5. Выразить все величины, входящие в условие задачи в единицах системы СИ.
- 6. Выяснить, можно ли в данной задаче рассматривать тело как материальную точку; последнее позволяет пренебречь формой тела и его размерами. В зависимости от этого меняется характер решения.
- 7. Выявить все упрощающие предположения, которые нужно сделать, чтобы решить данную задачу (например, в некоторых задачах пренебрегают трением, влиянием среды, неоднородностью образца и т. д.).
- 8. Выразить неизвестные физические величины через известные величины аналитически на основе законов и формул, применяемых к явлениям, описанным в задаче. При сомнении в правильности полученного результата проверить общее решение по равенству размерности левой и правой частей уравнения. Промежуточные расчеты допускаются только в случаях громоздких общих решений.
- 9. При поиске решения необходимо выяснить, какие величины заданы в задаче: если величины векторные, то применяют правила геометрического сложения и вычитания. Если величины скалярные, используют правила алгебры.
- 10. В полученное общее решение подставить вместо букв численные значения величин в одной системе единиц. Количество значащих цифр ответа (точность ответа) не должна превышать количество значащих цифр исходных данных задачи. Получив числовой ответ, оцените его с точки зрения здравого смысла. Это поможет обнаружить ошибочность полученного результата.

РАЗДЕЛ 1. ВОЛНОВАЯ ОПТИКА

1.1. Содержание теории

- 1. Интерференция света от двух точечных источников.
- 2. Интерференция света в тонких пленках.
- 3. Интерференционные приборы.
- 4. Зоны Френеля.
- 5. Дифракция на щели.
- 6. Дифракционная решетка. Дифракция рентгеновских лучей.
- 7. Закон Брюстера. Закон Малюса.
- 8. Степень поляризации света.
- 9. Вращение плоскости поляризации.

1.2. Формулы для решения задач

Интерференция

1. Скорость света в среде

$$v = \frac{c}{n}$$

где c – скорость света в вакууме; n – абсолютный показатель преломления среды.

- 2. При переходе из среды в среду частота света не меняется.
- 3. Длина волны в среде

$$\lambda = \frac{\lambda_0}{n}$$

где λ — длина волны в среде с показателем преломления $n; \lambda_0$ — длина этой волны в вакууме.

4. Оптическая длина пути волны

$$L = nl$$
,

где l — геометрическая длина ее пути в среде с показателем преломления n.

5.Связь разности фаз $\delta \varphi$ колебаний волн, прошедших разные пути, с их оптической разностью хода Δ :

$$\delta \varphi = \frac{2\pi}{\lambda} (l_2 - l_1) = \frac{2\pi}{\lambda_0} (L_2 - L_1) = \frac{2\pi}{\lambda_0} \Delta.$$

6. Условие максимумов интенсивности света при интерференции

$$\Delta = \pm m\lambda \ (m = 0, 1, 2, ...).$$

Примечание. Если интерференция наблюдается в однородной среде, то длина волны в п.6 и далее берется для этой среды.

7. Условие минимумов интенсивности света при интерференции

$$\Delta = \pm (2m+1)\frac{\lambda}{2} \quad (m=0,1,2,...).$$

8. Координаты максимумов и минимумов интенсивности света на экране при интерференции от двух параллельных щелей:

$$Y_{k \max} = \pm \frac{l}{d} k \lambda ,$$

$$Y_{k \min} = \pm \frac{l}{d} (2k+1) \frac{\lambda}{2} ,$$

где d — расстояние между щелями; l — расстояние от преграды со щелями до экрана.

9. Ширина интерференционной полосы (расстояние между двумя соседними минимумами):

$$\Delta y = \frac{l}{d} \lambda.$$

- 10. Оптическая разность хода двух световых волн при интерференции в тонких плёнках:
 - а) в проходящем свете

$$\Delta = 2d\sqrt{n^2 - \sin^2 \alpha};$$

б) в отражённом свете

$$\Delta = 2d\sqrt{n^2 - \sin^2 \alpha} \pm \frac{\lambda}{2} ,$$

где d — толщина плёнки; $n = \frac{n_2}{n_1}$ — относительный показатель

преломления плёнки; n_1 и n_2 – абсолютные показатели преломления в среде вокруг пленки и в пленке, соответственно; α – угол падения света на плёнку.

Член $\pm \frac{\lambda}{2}$ обусловлен тем, что при отражении от более плотной среды фаза волны меняется скачком на противоположную; если $n_2 > n_1$, необходимо использовать знак плюс, если $n_2 < n_1$ – знак минус.

11. Радиусы светлых колец Ньютона в отражённом свете (или тёмных в проходящем):

$$r_m = \sqrt{(2m-1)R\frac{\lambda}{2}} \ (m=1, 2, 3, ...);$$

- тёмных в отражённом (и светлых в проходящем) свете

$$r_m = \sqrt{mR\lambda} \ (m = 0, 1, 2, ...),$$

где R — радиус кривизны линзы; m — номер кольца.

12. При использовании «просветления оптики» показатель преломления стекла n_c и показатель преломления нанесенной на него пленки n должны быть связаны соотношением

$$n = \sqrt{n_c}$$
.

Тогда при отражении интерферирующие лучи гасят друг друга.

Дифракция света

13. Радиус внешней границы m–й зоны Френеля при сферическом волновом фронте волны, падающей на диафрагму с отверстием

$$r_m = \sqrt{\frac{a \cdot b}{a + b} \cdot m\lambda}$$
;

при падении на диафрагму плоской световой волны $r_m = \sqrt{bm\lambda}$, где a и b — соответственно расстояния от точечного источника до диафрагмы и от диафрагмы до экрана; λ — длина волны света.

14. При нормальном падении плоской волны на одну щель шириной a на экране наблюдаются:

максимумы интенсивности света при условии

$$a\sin\varphi = \pm(2m+1)\frac{\lambda}{2},$$

и минимумы интенсивности света при условии

$$a\sin\varphi = \pm 2m\frac{\lambda}{2} \ (m=1,2,3,...),$$

где φ — угол дифракции, m — номер максимума (минимума), λ — длина волны.

В направлении $\phi = 0$ всегда наблюдается главный (нулевой) максимум.

- 15. Период дифракционной решетки $d = \frac{1}{n}$, где n число щелей, приходящихся на единицу длины решетки.
- 16. Условия главных максимумов от дифракционной решетки, на которую падает нормально плоская волна

$$d \sin \varphi = \pm m\lambda$$
 $(m = 0, 1, 2, 3, ...)$.

17. Условия дифракционных максимумов от пространственной решетки (формула Вульфа-Брэгга)

$$2d\sin\theta = m\lambda \ (m=1,2,3,...) \ ,$$

где d – расстояние между атомными плоскостями кристалла; θ – угол между направлением пучка параллельных рентгеновских лучей, падающих на кристалл и гранью кристалла; λ – длина волны рентгеновских лучей.

18. Угловая дисперсия дифракционной решетки

$$D_{\phi} = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} \ .$$

19. Линейная дисперсия дифракционной решетки

$$D_L = F \frac{d\varphi}{d\lambda},$$

где F – фокусное расстояние линзы, проецирующей спектр на экран.

20. Разрешающая способность дифракционной решетки

$$R = \frac{\lambda}{d\lambda} = mN,$$

где λ и $\lambda + d\lambda$ — длины волн двух соседних спектральных линий, которые еще могут наблюдаться раздельно в спектре с помощью данной решетки; N — общее число щелей решетки; m — порядковый номер дифракционного максимума.

Поляризация света

21. Степень поляризации света

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}},$$

где I_{\max} и I_{\min} — максимальная и минимальная интенсивности частично поляризованного света.

22. Закон Малюса.

Интенсивность света, прошедшего через анализатор определяется выражением

$$I = I_0 \cos^2 \varphi,$$

где I — интенсивность плоскополяризованного света, прошедшего через анализатр; φ — угол между направлением колебаний светового вектора волны, падающей на анализатор, и плоскостью пропускания анализатора; I_0 — интенсивность плоскополяризованного света, падающего на анализатор.

23. Закон Брюстера

$$tgi_{B}=n_{21},$$

где $i_{\scriptscriptstyle E}$ — угол падения, при котором отраженный от диэлектрика луч плоскополяризован; $n_{\scriptscriptstyle 21}$ — относительный показатель диэлектрика, от которого отражается луч.

24. Скорость распространения обыкновенного и необыкновенного лучей в двоякопреломляющем кристалле

$$v_0 = \frac{c}{n_0}, \ v_e = \frac{c}{n_e},$$

где n_0 и n_e — абсолютные показатели преломления кристалла для обыкновенного и необыкновенного лучей.

25. Оптическая разность хода между обыкновенным и необыкновенным лучами на пути l в ячейке Керра

$$\Delta = l(n_0 - n_e) = klE^2,$$

где E – напряженность электрического поля; k – постоянная.

26. Оптическая разность хода для пластинки толщиной d, создающая сдвиг по фазе в четверть волны между обыкновенным и необыкновенным лучами после ее прохождения

$$\Delta = d(n_0 - n_e) = \pm (m + \frac{1}{4})\lambda_0 \ (m = 0, 1, 2,),$$

где λ_0 – длина волны в вакууме.

- 27. Угол поворота плоскости поляризации монохроматического света при прохождении через оптически активное вещество:
 - для твердых тел $\alpha = \alpha_0 l$,
 - для растворов $\alpha = \alpha_0 Cl$,

где α_0 — удельное вращение плоскости поляризации; l — толщина слоя оптически активного вещества; C — концентрация оптически активного вещества в растворе.

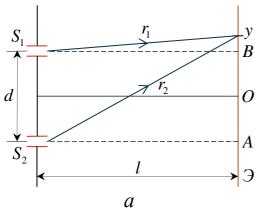
1.3. Примеры решения задач

Пример 1.

Плоская монохроматическая световая волна падает нормально на диафрагму с двумя узкими щелями, отстоящими друг от друга на расстояние d=2,5 мм. На экране, расположенном за диафрагмой на расстоянии l=100 см, образуется система интерференционных полос. На какое расстояние и в какую сторону сместятся эти полосы, если одну из щелей перекрыть стеклянной пластиной (n=1,5) толщины h=10 мкм?

Дано: d = 2,5 мм, l = 100 см, h = 10 мкм, n = 1,5.

Hайти: Δy .



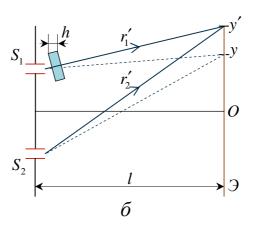


Рис. 1

Максимум интерференции κ -го порядка от двух источников находится на экране там, где разность хода лучей

 $\Delta r = r_2 - r_1 = k\lambda_0 \,,\, (k=0,\pm 1,\pm 2,\ldots - \text{целое число}) \text{ (рис. } 1,a),$ где λ_0 — длина волны в вакууме.

Координата κ -го максимума находится по формуле

$$y = \frac{l}{d}k\lambda_0$$
.

Пластинка, помещенная на пути луча 1 (рис. 1, δ), вносит дополнительную разность хода лучей $\Delta r' = r_2 - r_1' = r_2 - \left[(r_1 - h) + nh \right] = r_2 - r_1 + (n-1)h$, и если эта разность хода равна целому числу длин волн $\Delta r' = (k+N)\lambda_0$, то в точке с координатой у реализуется максимум (k+N) -го порядка, а максимум κ -го порядка, как и вся интерференционная картина, смещаются в сторону перекрытой щели.

Обозначим новое положение κ -го максимума y'. Расстояние между старым и новым положением κ -го максимума

$$\Delta y = y' - y = N \cdot a,\tag{1}$$

где

$$a = \frac{l}{d}\lambda_0 - \tag{2}$$

ширина интерференционной полосы (шириной полосы условились считать расстояние между соседними максимумами или минимумами). Учтем, что разность хода лучей Δr и $\Delta r'$ в точке с координатой у равна

$$(n-1)h = N\lambda_0. (3)$$

Решая систему уравнений (1) – (3), найдем

$$\Delta y = \frac{l}{d}(n-1)h = 2 \text{ MM}.$$

Система полос в нашем случае сместится вверх.

Пример 2.

Обращенная выпуклостью вниз плосковыпуклая линза закреплена неподвижно. Под линзой на небольшом расстоянии от нее находится стеклянная пластинка, которую можно перемещать по вертикали, вращая головку винта B (рис. 2). Шаг винта h = 100 мкм. Сверху линзу освещают светом с $\lambda_0 = 580$ нм и наблюдают в отраженном свете кольца Ньютона.

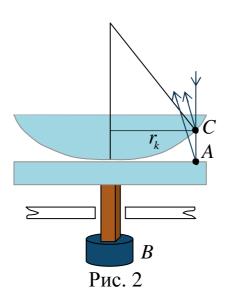
- 1. Что будет происходить с интерференционной картиной, если, плавно вращая винт, увеличивать зазор между линзой и пластиной?
- 2. Какое число новых колец возникнет (а старых исчезнет), если повернуть винт на 1 оборот?

 \mathcal{A} ано: $h = 10^{-4}$ м, $\lambda_0 = 5.8 \cdot 10^{-7}$ м, отраженный свет.

Hайти: N .

Решение.

Пусть при определенном положении пластины при отражении лучей в точках C и A реализуется k -й максимум; он соответствует светлому кольцу радиусом r_k ; толщина воздушного клина в этом месте AC = d.



Разность хода лучей, отражающихся от верхней и нижней поверхностей воздушного клина $\Delta = 2d + \frac{\lambda_0}{2}$; здесь учли, что при отражении от более плотной среды (в данном случае — нижней поверхности клина) фаза волны меняется скачком на противоположную. Так как для толщины клина d наблюдается максимум k-го порядка, справедливо выражение

$$2d + \frac{\lambda_0}{2} = k\lambda_0. \tag{1}$$

При увеличении зазора (и соответственно толщины клина d на фиксированном расстоянии от его центра) увеличивается и номер максимума (рис. 2); следовательно кольцо с определенным номером будет уменьшаться в диаметре; внутреннее кольцо будет стягиваться и исчезать, тогда как на внешней границе картины будут возникать новые кольца.

Запишем разность хода лучей после того, как винт повернули на 1 оборот, увеличив тем самым толщину клина на h; предположим, что при этом в точке C реализуется максимум с номером (k+N):

$$2(d+h) + \frac{\lambda_0}{2} = (k+N)\lambda_0. \tag{2}$$

Из системы уравнений (1) и (2) получим

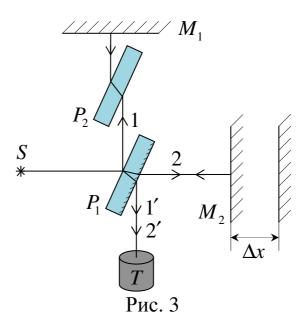
$$N = \frac{2h}{\lambda_0} = 345.$$

Пример 3.

В интерферометре Майкельсона использовалась жёлтая линия натрия, состоящая из двух компонент с длинами волн $\lambda_1 = 589,0$ нм и $\lambda_2 = 589,6$ нм. При поступательном перемещении одного из зеркал интерференционная картина периодически исчезала. Найти перемещение зеркала между двумя последовательными появлениями наиболее четкой интерференционной картины.

 \mathcal{L} ано: $\lambda_1 = 589,0$ нм, $\lambda_2 = 589,6$ нм.

Найти: Δx . *Решение*.



В интерферометре Майкельсона (рис. 3) пучок света от источника S падает на полупрозрачную пластинку P_1 и разделяется на лучи 1 и 2. Луч 1 проходит компенсаторную пластинку P_2 и отражается от зеркала M_1 , после чего он направляется через P_2 и P_1 уже в качестве луча 1' на трубу наблюдения T. Луч 2 отражается от зеркала M_2 , затем от пластинки P_1 и в качестве луча 2' идет на трубу наблюдения T. Если разность хода лучей 1 и 2 равна целому числу длин волн, труба позволяет наблюдать четкую интерференционную картину. Обозначим как Δx минимальное расстояние между двумя M_{2} которых наблюдается положениями зеркала при интерференционная картина для λ_1 и λ_2 . Условие перехода от одной четкой картины к следующей:

$$(k+1)\lambda_1 = k\lambda_2. \tag{1}$$

Связь перемещения зеркала и разности хода лучей 1 и 2:

$$2\Delta x = k\lambda_2. \tag{2}$$

Из системы уравнений (1) и (2) получим

$$\Delta x = \frac{\lambda_1 \lambda_2}{2(\lambda_2 - \lambda_1)} \approx \frac{\lambda^2}{2\Delta \lambda} = 0.3 \text{ MM}.$$

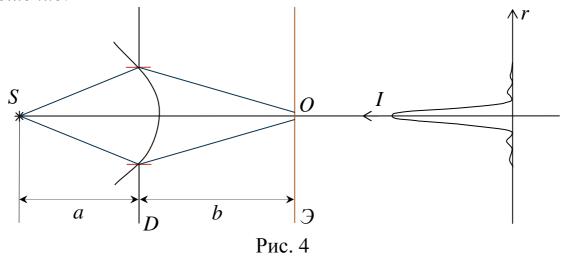
 Π ример 4.

Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять в процессе опыта. Расстояния от диафрагмы до источника и от диафрагмы до экрана равны a = 100 см и b = 125 см (рис. 4). Определить длину волны света, если максимум освещенности в центре дифракционной картины на экране наблюдается при $r_i = 1$ мм и следующий максимум при $r_2 = 1,29$ мм.

Дано: a = 100 см, b = 125 см, $r_1 = 1$ мм, $r_2 = 1,29$ мм.

Найти: λ_0 .

Решение.



В центре экрана наблюдается максимум, если в отверстии укладывается целое нечетное число зон Френеля. То есть радиус k – й зоны должен быть равен радиусу отверстия. В нашем случае

$$r_{1} = \sqrt{\frac{ab}{a+b}k\lambda_{0}}, \qquad (1)$$

$$r_{2} = \sqrt{\frac{ab}{a+b}(k+2)\lambda_{0}}, \qquad (2)$$

$$r_2 = \sqrt{\frac{ab}{a+b}(k+2)\lambda_0} , \qquad (2)$$

где k — целое нечетное число.

Решая систему уравнений (1) и (2), получим

$$\lambda_0 = \frac{a+b}{2ab} (r_2^2 - r_1^2) = 0.6$$
 MKM.

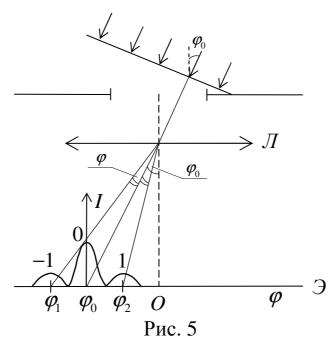
Пример 5.

Свет с длиной волны $\lambda_0 = 0.5$ мкм падает на щель шириной b = 10 мкм под углом $\varphi_0 = 30^\circ$ к ее нормали. Найти угловое положение первых минимумов, расположенных по обе стороны от центрального максимума.

 \mathcal{A} ано: $\lambda_0 = 0.5$ мкм, b = 10 мкм, $\varphi_0 = 30^{\circ}$.

Найти: φ_1 , φ_2 .

Решение.



Из рис. 5 видно, что

$$\varphi_1 = \varphi_0 + \varphi$$
, $\varphi_2 = \varphi_0 - \varphi$,

где φ – угол, на который отстоят первые минимумы от главного максимума.

Разность хода лучей, соответствующая минимуму k- го порядка:

$$\Delta = 2k \frac{\lambda_0}{2},$$

для минимума порядка k = +1

$$b\sin(\varphi_0 - \varphi) - b\sin\varphi_0 = \lambda_0. \tag{1}$$

Учтем, что $\sin(\varphi_0 - \varphi) = \sin\varphi_0 \cos\varphi - \sin\varphi\cos\varphi_0$.

Из (1)

$$\frac{b}{\lambda_0} = \sin \varphi_0 \cos \varphi - \sin \varphi \cos \varphi_0 - \sin \varphi_0.$$

С учетом $\cos \varphi \approx 1$ в силу малости угла φ , получим

$$\frac{\lambda_0}{b} = -\sin \varphi \cos \varphi_0$$
, или $\varphi = \arcsin \left(-\frac{\lambda_0}{b \cos \varphi_0} \right) = -3^\circ$.

Угол φ получился отрицательным, так как углы отсчитанные от нормали по часовой стрелке в математике считаются отрицательными. Однако в выражениях для φ_1 и φ_2 угол φ учтен по модулю. Поэтому будем считать $\varphi = 3^\circ$.

Тогда окончательно $\varphi_1 = 33^{\circ}$, $\varphi_2 = 27^{\circ}$.

Пример 6.

Прозрачная дифракционная решетка имеет период d=1,5 мкм. Найти угловую дисперсию D , соответствующую максимуму наибольшего порядка спектральной линии с $\lambda=530$ нм при нормальном падении света на решётку.

Дано: d = 1,5 мкм, $\lambda = 530$ нм.

Hайти: D_{φ} .

Решение.

Угловую дисперсию дифракционной решетки $D_{\varphi} = \frac{d \varphi}{d \lambda}$ найдем, продифференцировав условие главных максимумов решетки

$$d\sin\varphi = k\lambda: \tag{1}$$

 $d\cos \varphi d\varphi = md\lambda$, откуда $D_{\varphi} = \frac{d\varphi}{d\lambda} = \frac{k}{d\cos \varphi}$, где k – порядок спектра.

С учетом (1) последнее выражение можно представить как

$$D_{\varphi} = \frac{k}{d\sqrt{1 - \sin^2 \varphi}} = \frac{k}{d\sqrt{1 - \left(\frac{k\lambda}{d}\right)^2}}.$$
 (2)

Найдем наибольший порядок наблюдаемого спектра. Он определяется условием (1), в котором $\sin \varphi = 1$:

$$d = k'\lambda$$
,

где
$$k' = \frac{d}{\lambda} = 2.8$$
.

То есть наибольший порядок наблюдаемого спектра k=2 . Расчет с учетом выражения (2) дает $D_{\varphi}=6,5\,$ угл.мин/нм.

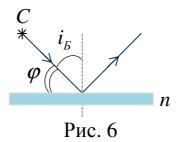
Пример 7.

На какой угловой высоте φ над горизонтом должно находиться Солнце, чтобы солнечный свет, отраженный от поверхности воды (n=1,33) был полностью поляризован?

Дано: n = 1,33.

Hайти: φ .

Решение.



По закону Брюстера свет, отражённый от поверхности диэлектрика, полностью поляризован, если угол падения $i_{\rm B}$ удовлетворяет условию

$$tgi_{\mathsf{B}}=n_{21},$$

где n_{21} – относительный показатель преломления второй среды (воды) относительно первой (воздуха), т. е. $tgi_{\rm \ B}=n$. С учетом

$$\varphi = \frac{\pi}{2} - i_{\rm B}$$
 получим

$$\varphi = \frac{\pi}{2} - arctg \, n = 37^{\circ}.$$

Пример 8.

На пути частично поляризованного света, степень поляризации которого P=0,6 поставили поляризатор так, что интенсивность прошедшего через него света максимальна. Далее плоскость пропускания поляризатора повернули на угол $\alpha=30^\circ$. Во сколько раз уменьшится интенсивность света, прошедшего поляризатор, во втором случае по сравнению с первым положением поляризатора?

Дано: P = 0.6, $\alpha = 30^{\circ}$.

Hайти: $K = I_1/I_2$.

Решение.

При первоначальном положении поляризатора он полностью пропускает линейно-поляризованный свет (интенсивностью I_n) и половину интенсивности естественного света (I_e):

$$I_1 = I_n + \frac{1}{2}I_e.$$

При повороте поляризатора меняется интенсивность пропущенного поляризованного света, согласно закону Малюса, а интенсивность прошедшего естественного света не меняется:

$$I_{2} = I_{n} \cos^{2} \alpha + \frac{1}{2} I_{e},$$

$$K = \frac{I_{1}}{I_{2}} = \frac{I_{n} + \frac{1}{2} I_{e}}{I_{n} \cos^{2} \phi + \frac{1}{2} I_{e}}.$$

В последнем выражении разделим числитель и знаменатель на I_e и обозначим $\frac{I_n}{I_e} = x$. Получим

$$K = \frac{x + \frac{1}{2}}{x \cos^2 \varphi + \frac{1}{2}}.$$
 (1)

Аналогичную операцию проделаем с выражением для степени поляризации

$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}},\tag{2}$$

где I_{\max} и I_{\min} — соответственно максимальная и минимальная интенсивности света, пропущенного через поляризатор. Учтем, что

$$I_{\text{max}} = I_n + \frac{1}{2}I_e, \tag{3}$$

$$I_{\min} = \frac{1}{2}I_e. \tag{4}$$

Подставив (3) и (4) в (2), получим $P = \frac{I_n}{I_n + I_e}$, или (после

деления числителя и знаменателя на I_e) $P = \frac{x}{x+1}$, откуда

$$x = \frac{P}{1 - P}. ag{5}$$

Решая совместно систему уравнений (1) и (5), окончательно вычислим K=1,23.

Пример 9.

Естественный монохроматический свет падает на систему из двух скрещенных николей, между которыми находится кварцевая пластинка, вырезанная перпендикулярно к оптической оси. Найти минимальную толщину пластинки, при которой эта система будет пропускать $\eta = 0.3$ светового потока, если постоянная вращения кварца $\alpha_0 = 17$ угл. рад/мм.

 \mathcal{A} ано: $\eta = 0.3$, $\alpha_0 = 17$ угл. рад/мм.

Hайти: d_{\min} .

Решение.

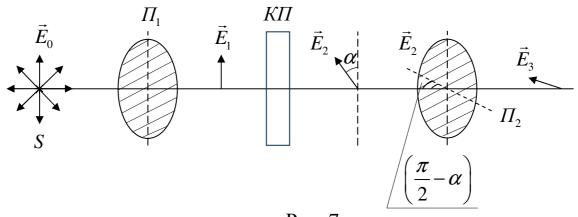


Рис. 7

Схема опыта по пропусканию света через два николя и пластинку оптически активного вещества между ними (кварц) изображена на рис. 7. После первого поляризатора распространяется линейно-поляризованный свет с направлением \vec{E}_1 , совпадающим по направлению с главным сечением Π_1 первого поляризатора. Угол поворота плоскости поляризации света кварцевой пластиной $K\Pi$ определяется из соотношения $\alpha = \alpha_0 d$; если $\alpha < 2\pi$,

$$\alpha = \alpha_0 d_{\min}. \tag{1}$$

Второй поляризатор (анализатор) пропускает только составляющую вектора \vec{E}_2 , параллельную его главному сечению Π_2 :

$$E_3 = E_2 \cos^2\left(\frac{\pi}{2} - \alpha\right) = E_2 \sin \alpha.$$

Перейдем к интенсивностям света.

$$I_{1} = \frac{1}{2}I_{0},$$

$$I_{2} = I_{1},$$

$$I_{3} = I_{2}\cos^{2}\left(\frac{\pi}{2} - \alpha\right) = \frac{1}{2}I_{0}\sin^{2}\alpha.$$
(2)

Учитывая, что

$$\frac{I_3}{I_0} = \eta \tag{3}$$

и решая систему уравнений (1) – (3), получим

$$d_{\min} = \frac{1}{\alpha_0} \arcsin \sqrt{2\eta} = 3 \text{ MM}.$$

1.4. Варианты индивидуальных заданий

Таблица 1

No					Н	омера зад	1011			таолица
1	1	70	96	159	182	омера зад 270	225	289	335	344
2	2	71	97	160	181	271	226	290	336	345
3	3	51	98	161	180	272	227	291	349	346
4	4	52	99	162	179	273	228	292	380	347
5	5	53	100	148	178	274	229	293	337	348
6	6	54	101	149	177	275	230	394	338	349
7	7	110	102	150	168	276	231	295	303	350
8	8	111	102	151	169	235	232	296	303	351
9	9	112	103	152	170	236	233	297	305	352
10	10	113	105	153	171	237	234	298	306	353
11	11	114	106	163	172	256	238	299	307	354
12	12	115	107	164	173	257	239	300	308	355
13	13	116	108	165	174	258	240	301	309	356
14	14	117	109	166	175	259	241	302	310	357
15	15	118	127	159	176	260	242	303	289	358
16	16	119	128	160	371	261	243	304	290	360
17	17	120	129	161	372	262	244	305	291	361
18	18	121	130	162	373	263	245	306	292	362
19	19	122	131	148	374	264	246	307	293	363
20	20	143	132	149	375	263	247	308	294	369
21	21	144	55	150	376	264	248	309	295	370
22	22	145	56	151	198	265	249	310	296	364
23	23	146	57	152	199	266	250	311	297	365
24	24	123	58	153	183	267	251	312	298	366
25	25	124	59	165	184	268	252	313	299	367
26	26	125	60	164	185	269	253	315	300	368
27	27	126	61	163	186	201	254	316	301	344
28	28	73	62	166	187	202	255	317	302	345
29	29	74	63	159	188	203	278	318	339	346
30	30	75	64	160	189	204	279	319	340	347
31	31	76	65	161	190	205	280	320	314	348
32	32	77	66	162	191	206	281	321	341	349
33	33	78	67	148	192	207	282	322	342	350
34	34	79	68	149	193	208	283	323	335	351
35	35	80	69	150	194	209	284	324	336	352
36	36	81	133	151	195	210	285	325	379	353
37	37	82	134	152	196	211	286	326	380	354
38	38	83	135	153	197	212	287	327	237	355
39	39	84	136	165	371	213	278	328	238	356
40	40	85	137	164	372	214	279	329	315	357
41	41	86	138	163	376	215	280	330	316	358
42	42	87	139	166	374	216	281	331	317	360
43	43	88	140	159	375	217	282	332	318	361
44	44	89	141	160	373	218	283	333	319	362
45	45	90	142	161	198	219	284	334	320	363
46	46	91	143	148	199	220	285	339	321	369
47	47	92	144	149	337	221	286	340	322	370
48	48	93	145	150	378	222	287	314	323	364
49	49	94	146	151	196	223	278	341	324	365
50	50	95	64	152	197	224	279	342	325	366

РАЗДЕЛ 2. КВАНТОВАЯ ОПТИКА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ

2.1. Содержание теории

- 1. Тепловое излучение и его законы.
- 2. Энергия и импульс фотона.
- 3. Внешний фотоэффект.
- 4. Давление света.
- 5. Эффект Комптона.
- 6. Тормозное рентгеновское излучение. Коротковолновая граница.
- 7. Гипотеза де Бройля.
- 8. Соотношения неопределенностей Гейзенберга.

2.2. Формулы для решения задач

Тепловое излучение

1. Энергетическая светимость или излучательная способность тела

$$R_{\scriptscriptstyle 9} = \frac{dW}{dtdS},$$

где dW — энергия, излучаемая с участка поверхности dS тела за время dt.

2. Поглощательная способность тела — отношение энергии, поглощаемой телом в малом интервале длин волн $(\lambda, \lambda + d\lambda)$, к падающей на него энергии в том же интервале длин волн

$$a_{\lambda,T} = \frac{dW_{nozn}}{dW_{na\partial}}.$$

3. Серое тело – тело, поглощательная способность которого не зависит от длины волны падающего излучения:

$$a_{\lambda,T} = a_T = const$$
.

4. Абсолютно черное тело – поглощает всю падающую на его поверхность энергию:

$$a_{\lambda,T} = a_T^* = 1.$$

5. Закон Стефана-Больцмана. Энергетическая светимость поверхности абсолютно черного тела

$$R_{\scriptscriptstyle 9}^* = \sigma T^4,$$

где σ — постоянная Стефана-Больцмана; T — абсолютная температура излучающего тела.

6. Энергетическая светимость "серого" тела

$$R_{_{\mathfrak{I}}}=a_{_{T}}R_{_{\mathfrak{I}}}^{*},$$

где a_T – коэффициент поглощения "серого" тела.

7. Спектральная плотность энергетической светимости $r_{\lambda,T}$ – энергия, излучаемая с единицы площади поверхности тела в единицу времени в малом интервале длин волн $(\lambda, \lambda + d\lambda)$:

$$r_{\lambda,T} = \frac{dW}{dt dS d\lambda} = \frac{dR_{\text{3}}}{d\lambda}.$$

- 8. Законы Вина.
- а) Первый закон Вина (закон смещения).

$$\lambda_m \cdot T = C'$$
,

где λ_m — длина волны, на которую приходится максимум энергии излучения в спектре абсолютно черного тела; C' — постоянная Вина в законе смещения.

б) Второй закон Вина. Максимальное значение спектральной плотности энергетической светимости абсолютно черного тела равно

$$\left(r_{\lambda,T}^*\right)_{MAX}=C''T^5,$$

где C'' – постоянная Вина.

9. Формула Планка. Спектральная плотность энергетической светимости абсолютно черного тела

$$r_{\lambda,T}^* = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/(\lambda kT)} - 1},$$

где h — постоянная Планка; λ — длина волны излучения; c — скорость свет; k — постоянная Больцмана.

Энергия и импульс фотона

10. Энергия фотона

$$\varepsilon = hv = \hbar\omega = h\frac{c}{\lambda},$$

где v — частота; λ — длина волны; c — скорость света в вакууме; h — постоянная Планка, $\hbar = \frac{h}{2\pi}$; ν — частота света, $\omega = 2\pi \cdot \nu$ — циклическая частота.

11. Импульс фотона

$$p = \frac{\varepsilon}{c} = \frac{hv}{c} = \frac{h}{\lambda}.$$

Фотоэффект

12. Уравнение Эйнштейна для внешнего фотоэффекта

$$hv = A + W_{max} = A + \frac{m_e v_{max}^2}{2},$$

где hV — энергия фотона; A — работа выхода электрона из металла; $W_{max} = \frac{m_e V_{max}^{-2}}{2} - \text{максимальная} \quad \text{кинетическая} \quad \text{энергия}$ фотоэлектронов.

13. Красная граница фотоэффекта

$$\lambda_0 = \frac{hc}{A}$$
,

где λ_0 — максимальная длина волны света, при которой ещё возможен фотоэффект.

Давление света

14. Давление света, падающего на поверхность перпендикулярно ей

$$p = \frac{E}{c} (1 + \rho),$$

где E — энергия, падающая на единицу поверхности за единицу времени; c — скорость света в вакууме; ρ — коэффициент отражения света поверхностью.

15. E = Nhv — это совокупная энергия всех фотонов, падающих на единицу поверхности в единицу времени.

16. Давление света при падении на поверхность под углом α :

$$p = \frac{E}{c}(1+\rho)\cos\alpha.$$

Эффект Комптона

17. Изменение длины волны рентгеновских лучей при рассеянии на свободных электронах определяется формулой

$$\Delta \lambda = \lambda_2 - \lambda_1 = \frac{h}{m_0 c} (1 - \cos \theta) = 2 \frac{h}{m_0 c} \cdot \sin^2 \frac{\theta}{2},$$

где λ_1 — длина волны падающего рентгеновского излучения; λ_2 — длина волны фотона, рассеянного под углом θ к первоначальному направлению движения, после взаимодействия с электроном; m_0 — масса покоя электрона; $\lambda_0 = \frac{h}{m_0 c}$ — комптоновская длина волны.

Тормозное рентгеновское излучение. Коротковолновая граница

18. Коротковолновая граница тормозного рентгеновского излучения

$$hv_{max} = \frac{hc}{\lambda_{min}} = \frac{mv^2}{2} = eU,$$

где U – ускоряющая разность потенциалов для электронов.

Волновые свойства частиц

19. Формула де Бройля, выражающая связь длины волн λ с импульсом p частицы, движущейся со скоростью v:

$$\lambda = \frac{h}{p} = \frac{h}{mv} .$$

В классическом приближении $m=m_0$, для релятивистской частицы $m=\frac{m_0}{\sqrt{1-\frac{v^2}{2}}}$.

- 20. Связь длины волны де Бройля с кинетической энергией T частицы:
 - а) в классическом приближении

$$\lambda = \frac{h}{\sqrt{2m_0T}};$$

б) в релятивистском случае

$$\lambda = \frac{h}{\sqrt{T(T + 2E_0)}},$$

где E_0 – энергия покоя частицы ($E_0 = m_0 c^2$).

21. Связь между кинетической энергией и импульсом релятивистской частицы

$$p^2c^2 = T(T + 2m_0c^2).$$

22. Фазовая скорость волн де Бройля

$$v = \frac{\omega}{k}$$

где ω – круговая частота; k – волновое число ($k=2\pi/\lambda$).

23. Групповая скорость волн де Бройля

$$u = \frac{d\omega}{dk}$$
.

24. Соотношения де Бройля

$$E = \hbar \omega; \vec{p} = \hbar \vec{k} ,$$

где E — энергия движущейся частицы; p — импульс частицы; \vec{k} — волновой вектор; $\left|\vec{k}\right| = k = 2\pi / \lambda$; \hbar — приведенная постоянная Планка.

25. Соотношение неопределённостей для координаты и импульса частицы

$$\Delta p_x \cdot \Delta x \ge \hbar$$
,

где Δp_x — неопределенность проекции импульса частицы на ось x; Δx — неопределённость её координаты.

26. Соотношение неопределённостей для энергии и времени $\Delta E \cdot \Delta t \geq \hbar$,

где ΔE — неопределённость энергии данного квантового состояния; Δt — время пребывания системы в этом состоянии.

2.3. Примеры решения задач

Пример 1.

Используя формулу Планка, определить поток излучения с единицы поверхности черного тела, приходящийся на узкий интервал длин волн $\Delta \lambda = 5$ нм около максимума спектральной плотности энергетической светимости, если температура черного тела T = 2500 К.

 \mathcal{A} ано: $\Delta \lambda = 5$ нм, $\lambda = \lambda_{\text{max}}$, T = 2500 К.

Найти: $r_{\lambda T}^* \cdot \Delta \lambda$.

Решение.

В общем случае $r_{\lambda T} = \frac{dR_T}{d\lambda}$, и поток излучения, приходящийся на интервал длин волн $(\lambda, \lambda + \Delta\lambda)$ находится по формуле $\Delta R_{\lambda T} = \int\limits_{\lambda}^{\lambda + \Delta\lambda} r_{\lambda T} d\lambda$, однако для малого интервала длин волн $(\Delta\lambda \ll \lambda)$ с достаточной степенью точности можно считать

$$\Delta R_{\lambda T} = r_{\lambda T} \Delta \lambda \,. \tag{1}$$

Для черного тела спектральная плотность излучения дается формулой Планка

$$r_{vT}^* = \frac{2\pi h v^3}{c^2} \frac{2}{\exp\left(\frac{hv}{kT}\right) - 1}.$$
 (2)

Перейдем в этой зависимости от частоты к длине волны излучения.

Энергетическая светимость

$$dR_{\tau\lambda}^* = r_{\nu\tau}^* d\nu = r_{\lambda\tau}^* d\nu = r_{\lambda\tau}^* d\lambda, \tag{3}$$

при этом интервалы $d\nu$ и $d\lambda$ относятся к одному и тому же участку спектра. Учтем, что $\nu=\frac{c}{\lambda}$; продифференцировав последнее выражение

$$dv = -\frac{c}{\lambda^2} d\lambda, \tag{4}$$

учтем, что знак минус в последнем выражении несущественен, он указывает лишь на то, что с ростом одной величины, например λ ,

другая, в данном примере ν , убывает. Поэтому далее минус опустим для простоты рассуждений. Из (2)-(4) выразим $r_{\lambda T}^*$:

$$r_{\lambda T}^* = r_{\nu T}^* \frac{d\nu}{d\lambda} = r_{\nu T}^* \frac{c}{\lambda^2} = \frac{2\pi hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{k\lambda T}\right) - 1}.$$

Подставив последнее выражение в (1) для черного тела, получим

$$\Delta R_{\lambda T}^* = \frac{2\pi hc^2 \Delta \lambda}{\lambda^5 \left[\exp\left(\frac{hc}{k\lambda T}\right) - 1 \right]} = 6,26 \text{ kBt/m}^2.$$

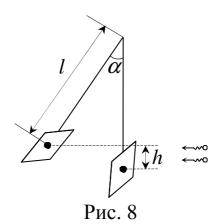
Пример 2.

Небольшое идеально отражающее зеркальце массы m=10 мг подвешено на невесомой нити длины l=10 см. Найти угол, на который отклонится нить, если по нормали к зеркалу горизонтально "выстрелить" коротким импульсом лазерного излучения с энергией $E=13\,$ Дж. За счет чего зеркальце приобретет кинетическую энергию?

 \mathcal{L} ано: m = 10 мг, l = 10 см, E = 13 Дж.

Hайти: lpha .

Решение.



Зеркальце приобретёт кинетическую энергию в результате упругого соударения с группой фотонов, составляющих импульс лазерного излучения. Пусть число фотонов в импульсе N. Тогда с учетом того, что излучение монохроматическое, совокупная энергия фотонов

$$E = Nhv. (1)$$

Импульс одного фотона $P_{\Phi} = \frac{hv}{c}$.

При упругом соударении зеркало от одного фотона получает импульс $P_{\rm l}=2\frac{h\nu}{c}$. Закон сохранения импульса в системе зеркало-импульс

$$mv = 2N\frac{hv}{c},\tag{2}$$

где υ – скорость зеркальца непосредственно после контакта с излучением. Высота подъема зеркальца $h = l(1-\cos\alpha)$ (рис. 1).

Для зеркальца после попадания в него излучения можно записать закон сохранения энергии

$$\frac{mv^2}{2} = mgl(1 - \cos\alpha). \tag{3}$$

Решая совместно систему уравнений (1) - (3), получим

$$\sin\frac{\alpha}{2} = \frac{E}{mc} \frac{1}{\sqrt{gl}} = 0.5^{\circ}.$$

Пример 3.

При поочередном освещении поверхности некоторого металла светом с длинами волн $\lambda_1 = 0.35$ мкм и $\lambda_2 = 0.54$ мкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в $\eta = 2$ раза. Найти работу выхода с поверхности этого металла.

Дано:
$$\lambda_1 = 0.35$$
 мкм, $\lambda_2 = 0.54$ мкм, $\frac{v_{\text{max}1}}{v_{\text{max}2}} = \eta = 2$.

Найти: А.

Решение.

Запишем в обоих случаях уравнение Эйнштейна.

$$\frac{hc}{\lambda_1} = A + \frac{mv_{\text{max 1}}^2}{2},\tag{1}$$

$$\frac{hc}{\lambda_2} = A + \frac{mv_{\text{max 2}}^2}{2}.$$
 (2)

Выразим из каждого уравнения скорость электронов и найдем отношение скоростей:

$$\eta^2 = \frac{hc - A\lambda_1}{hc - A\lambda_2} \cdot \frac{\lambda_2}{\lambda_1}.$$

Из последнего выражения получим работу выхода

$$A = hc \frac{\left(\eta^2 - \frac{\lambda_2}{\lambda_1}\right)}{\lambda_2 \left(\eta^2 - 1\right)} = 1,9 \text{ 3B}.$$

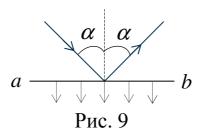
Пример 4.

Плоская световая волна интенсивностью I=0,1 Вт/см 2 падает под углом $\alpha=30^\circ$ на плоскую отражающую поверхность с коэффициентом отражения $\rho=0,7$. Используя квантовые представления, определить нормальное давление, оказываемое светом на эту поверхность.

Дано: $I = 0.1 \text{ BT/cm}^2$, $\alpha = 30^\circ$, $\rho = 0.7$.

Найти: Нормальное Р.

Решение.



Интенсивность света (электромагнитной волны) I равна энергии, переносимой волной за единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность бегущей волны

$$I = n_0 h v c, \tag{1}$$

где n_0 – концентрация фотонов в излучении; c – скорость света.

Пусть монохроматический свет падает на границу раздела ab под углом α (рис. 9); n — число фотонов, падающих за единицу времени на единицу площади. Из этих n фотонов $n_1 = \rho n$ зеркально отражаются, и каждый такой фотон передает поверхности нормально к ней направленный импульс $P_1 = 2\frac{hv}{c}\cos\alpha$. Остальные фотоны

числом $n_2 = n - n_1 = (1 - \rho)n$ поглощаются поверхностью, при этом каждый из них передает поверхности импульс, нормальная составляющая к поверхности которого равна $P_2 = \frac{hv}{c}\cos\alpha$. Нормальное давление света на поверхность

$$P = n_1 P_1 + n_2 P_2 = \rho n \frac{2h\nu}{c} \cos \alpha + (1 - \rho) n \frac{h\nu}{c} \cos \alpha = \frac{nh\nu}{c} (1 + \rho) \cos \alpha. \quad (2)$$

Учтем, что

$$n = n_0 c \cos \alpha. \tag{3}$$

Решая совместно систему уравнений (1) - (3), получим

$$P = \frac{I}{c} (1 + \rho) \cos^2 \alpha = 4{,}25$$
 мкПа.

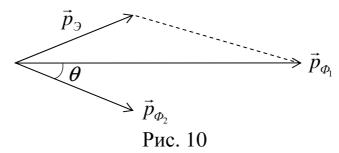
Пример 5.

Фотон с длиной волны $\lambda = 700$ нм рассеивается под углом $\theta = \frac{\pi}{2}$ на свободном покоящемся электроне. Определить: а) какую долю первоначальной энергии теряет при этом фотон; б) какую скорость приобретает электрон.

Дано:
$$\lambda = 700$$
 нм, $\theta = \frac{\pi}{2}$.

Haŭmu: a)
$$\frac{\Delta \varepsilon}{\varepsilon_1}$$
, δ) v .

Решение.



а) Запишем формулу Комптона, связывающую длины волн рассеянного и налетающего на электрон фотона

$$\lambda_2 - \lambda_1 = \frac{h}{m_0 c} (1 - \cos \theta), \tag{1}$$

где $\lambda_0 = \frac{h}{m_0 c} = 2,4 \cdot 10^{-12}$ м – комптоновская длина волны, а так как

 $\theta = \frac{\pi}{2}$, то выражение (1) можно упростить:

$$\lambda_2 = \lambda_1 + \lambda_0. \tag{2}$$

Выразим энергию фотонов через длину волны

$$\varepsilon_1 = \frac{hc}{\lambda_1}, \ \varepsilon_2 = \frac{hc}{\lambda_2}.$$
(3)

Доля первоначальной энергии, теряемая фотоном

$$\frac{\Delta \varepsilon}{\varepsilon_1} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1} = 1 - \frac{\varepsilon_2}{\varepsilon_1} = 1 - \frac{\lambda_1}{\lambda_2} = 1 - \frac{\lambda_1}{\lambda_1 + \lambda_0} = \frac{\lambda_0}{\lambda_1 + \lambda_0} \approx \frac{\lambda_0}{\lambda_1} = 0,347 \cdot 10^{-5}.$$

б) Закон сохранения энергии при рассеянии фотона на электроне, в результате чего кинетическая энергия T электрона становится сравнимой с его энергией покоя $E_0 = m_0 c^2$:

$$\mathcal{E}_1 = \mathcal{E}_2 + T ,$$

где $T = mc^2 - m_0c^2$.

Его можно записать так

$$(m - m_0)c^2 = \Delta \varepsilon. (1)$$

Из решения части а) выразим

$$\Delta \mathcal{E} = \frac{\lambda_0}{\lambda_1} \mathcal{E}_1 \tag{2}$$

и подставим в предыдущее выражение. Учтём, что релятивистская масса

$$m = m_0 \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}. (3)$$

Решая совместно систему уравнений (1) – (3), получим

$$v = \frac{h\sqrt{2}}{m_0\lambda_1} = 1,47$$
 km/c.

Пример 6.

Какое ускоряющее напряжение должен пройти покоящийся вначале электрон, чтобы энергия выбитого им фотона из анода

рентгеновской трубки соответствовала коротковолновой границе тормозного рентгеновского излучения $\lambda_{\min} = 25 \text{ пм}.$

 \mathcal{A} ано: $\lambda_{\min} = 25$ пм.

Найти: U.

Решение.

Тормозное рентгеновское излучение возникает при резком торможении быстрых электронов материалом анода рентгеновской трубки. Так как излучение возникает за счет энергии, теряемой электроном при торможении, то величина кванта не может превысить энергию электрона T=eU:

$$hV \le eU$$
, или $hV_{\max} = eU$.

Запишем иначе

$$\frac{hc}{\lambda_{\min}} = eU$$
,

отсюда
$$U = \frac{hc}{e\lambda_{\min}} = 50$$
 кВ.

Пример 7.

Определить, при каком числовом значении кинетической энергии T длина волны де Бройля электрона равна его комптоновской длине волны.

Дано:
$$\lambda = \lambda_0 = \frac{h}{m_0 c} = 2, 4 \cdot 10^{-12} \text{ м.}$$

Найти: Т.

Решение.

Из соотношения де Бройля

$$\lambda = \frac{h}{p}.\tag{1}$$

оценим скорость электрона, предположив, что он нерелятивистский:

$$\lambda_0 = \frac{h}{m_0 v}$$
, или $v = \frac{h}{m_0 \lambda_0} = \frac{h m_0 c}{m_0 h} = c$.

Очевидно, скорость света c для электрона недостижима, тем более для нерелятивистского. Однако, если он - релятивистский, его $m > m_0$, а v < c соответственно. Таким образом, длину волны де

Бройля λ_0 может иметь только релятивистский электрон. Выразим импульс его через кинетическую энергию.

 $\left(pc\right)^2 = E^2 - E_0^2;$ учтем, что полная энергия релятивистской частицы $E = E_0 + T$, и получим

$$(pc)^2 = T(2E_0 + T). (2)$$

Решая совместно уравнения (1) и (2), получим $T=E_0\left(\sqrt{2}-1\right)=0,212$ МэВ (учли, что $E_0=0,51$ МэВ).

Пример 8.

Длина волны λ излучаемого атомом фотона составляет 0,6 мкм. Принимая время жизни возбужденного состояния $\Delta t = 10^{-8}$ с, определить отношение естественной ширины энергетического уровня, на который был возбужден электрон, к энергии, излученной атомом.

 \mathcal{L} ано: $\lambda = 0.6$ мкм, $\Delta t = 10^{-8}$ с.

Haŭmu: $\frac{\Delta E}{E}$.

Решение.

Воспользуемся соотношением неопределенностей Гейзенберга для энергии и времени

$$\Delta E \cdot \Delta t \geq \hbar$$
,

где ΔE — неопределенность энергии E данного состояния; Δt — время жизни системы в этом состоянии.

Ширина энергетического уровня равна максимальной неопределенности энергии, следующей из этого соотношения

$$\Delta E = \Delta E_{\text{max}} = \frac{\hbar}{\Delta t},$$

$$\frac{\Delta E}{E} = \frac{h}{\Delta t} \frac{\lambda}{hc} = \frac{\lambda}{c \cdot \Delta t} = 2 \cdot 10^{-7}.$$

2.4. Варианты индивидуальных заданий

Таблица 2

N₂	Номера задач										пца 2
1	1	51	101	140	164	175	207	6	59	81	220
2	2	52	102	141	165	176	208	7	60	82	221
3	3	53	103	142	166	177	209	8	61	83	222
4	4	54	103	143	167	178	210	9	62	84	223
5	5	55	105	144	168	179	211	10	63	85	224
6	6	56	106	145	169	180	212	11	64	86	225
7	7	57	107	146	170	181	213	12	65	87	226
8	8	58	108	147	171	182	214	13	66	88	227
9	9	59	109	148	172	183	215	14	67	89	228
10	10	60	110	149	173	184	216	15	68	90	214
11	11	61	111	150	174	185	217	16	69	91	215
12	12	62	112	151	164	186	218	17	70	92	216
13	13	63	113	152	165	187	219	18	71	93	217
14	14	64	114	153	166	188	220	19	72	94	218
15	15	65	115	154	167	189	221	20	73	95	219
16	16	66	116	155	168	190	222	1	74	96	145
17	17	67	117	156	169	191	223	2	75	97	146
18	18	68	118	157	170	192	224	3	130	98	147
19	19	69	119	158	171	193	225	4	131	99	148
20	20	70	120	159	172	194	226	5	132	100	149
21	21	71	121	160	173	195	227	51	133	207	150
22	22	72	122	161	174	196	228	52	134	208	151
23	23	73	123	162	164	197	207	53	135	209	152
24	24	74	124	163	165	198	208	54	136	210	153
25	25	75	125	140	166	199	209	55	137	211	154
26	26	76	126	141	167	200	210	56	138	212	155
27	27	77	127	142	168	201	211	57	139	213	156
28	28	78	128	143	169	202	212	58	110	214	157
29	29	79	129	144	170	203	213	59	111	215	158
30	30	80	130	145	171	204	214	60	112	216	159
31	31	81	131	146	172	204	215	61	113	217	160
32	32	82	132	147	173	205	216	101	114	218	161
33	33	83	133	148	174	206	217	102	115	219	101
34	34	84	134	149	164	175	218	103	116	220	102
35	35	85	135	150	165	176	219	103	117	221	103
36	36	86	136	151	166	177	220	105	118	222	104
37	37	87	137	152	167	178	221	106	119	223	105
38	38	88	138	153	168	179	222	107	120	224	106
39	39	89	139	154	169	180	223	108	51	225	107
40	40	90	110	155	170	181	224	109	52	226	108
41	41	91	111	156	171	182	225	110	53	227	109
42	42	92	112	157	172	183	226	111	54	228	110
43	43	93	113	158	173	184	227	112	55	207	111
44	44	94	114	159	174	185	228	113	56	208	112
45	45	95	115	160	164	186	214	114	57	209	113
46	46	96	116	161	165	187	215	115	58	210	114
47	47	97	117	162	166	188	216	116	59	211	115
48	48	98	118	163	167	189	217	117	60	212	116
49	49	99	119	140	168	190	218	118	61	213	117
50	50	100	120	141	169	191	219	119	62	214	118
	- 20	100	120	111	107	1/1	-17	11/			110

РАЗДЕЛ 3. ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ И ФИЗИКИ АТОМА

3.1. Содержание теории

- 1. Уравнение Шредингера. Свободная микрочастица.
- 2. Частица в потенциальной яме с бесконечно высокими стенками. Вероятность обнаружения частицы.
- 3. Частица в потенциальной яме с бесконечно высокими стенками. Квантование энергии.
- 4. Квантовый гармонический осциллятор. Частица на скачке потенциальной энергии.
- 5. Прохождение частицы через потенциальный барьер. Туннельный эффект.
- 6. Теория атома водорода по Бору. Энергетические состояния электрона.
- 7. Теория атома водорода по Бору. Стационарные орбиты.
- 8. Принцип Паули. Заполнение оболочек в многоэлектронных атомах.

3.2. Формулы для решения задач

Уравнение Шредингера. Квантовомеханические задачи.

1. Вероятность обнаружить частицу в объеме dV

$$dW = \left|\Psi\right|^2 dV ,$$

где $\Psi = \Psi(x,y,z,t)$ – волновая функция, описывающая состояние частицы; $|\Psi|^2$ – квадрат модуля волновой функции.

2. Для стационарных состояний $\Psi = \Psi(x,y,z,t) = \psi(x,y,z) \varphi(t)$, где $\psi(x,y,z)$ — координатная, а $\varphi(t)$ — временная часть волновой функции. В этом случае

$$dW = \left| \psi \right|^2 dV.$$

3. Среднее значение физической величины L для частицы в состоянии с волновой функцией Ψ

$$\langle L \rangle = \int_{0}^{+\infty} L |\Psi|^2 dV.$$

4. В одномерном стационарном случае $dW = |\psi(x)|^2 dx$; вероятность обнаружить частицу в интервале (x_1, x_2) определяется формулой

$$W = \int_{x_1}^{x_2} \left| \psi(x) \right|^2 dx.$$

5. Одномерное общее (зависящее от времени) уравнение Шредингера

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + U(x)\Psi,$$

где $\Psi(x,t)$ – волновая функция, описывающая состояние частицы с потенциальной энергией U(x).

6. Для одномерного движения свободной частицы

$$\Psi(x,t) = A \exp \frac{i}{\hbar} (px - Et),$$

где A — амплитуда волны де Бройля; $p = \hbar k$ — импульс частицы; $E = \hbar \omega$ — ее энергия. Волновое число k связано с длиной волны де Бройля соотношением

$$k = \frac{2\pi}{\lambda}.$$

7. Одномерное стационарное уравнение Шредингера

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2}(E - U)\psi = 0,$$

где E — полная энергия; U(x) — потенциальная энергия частицы; $\psi(x)$ — координатная часть волновой функции.

8. Собственное значение энергии частицы на *n*-м энергетическом уровне в одномерном потенциальном ящике с бесконечно высокими стенками

$$E_n = \frac{\pi^2 \hbar^2}{2ml^2} n^2 \ (n = 1, 2, 3, ...),$$

где l – ширина потенциального ящика.

Этому значению энергии соответствует собственная волновая функция

$$\psi_n(x) = \sqrt{\frac{2}{l}} \sin \frac{\pi n}{l} x.$$

9. Коэффициент преломления n волн де Бройля на скачке потенциальной энергии высотой U в случае U < E

$$n = \frac{\lambda_1}{\lambda_2} = \frac{k_2}{k_1},$$

где λ_1, λ_2 — длины волн де Бройля в областях с разным уровнем потенциальной энергии; k_1, k_2 — соответствующие этим длинам волн волновые числа. Частица налетает из области 1.

10. Коэффициенты отражения ρ и пропускания τ волн де Бройля на скачке потенциальной энергии (U < E)

$$\rho = \left| \frac{k_1 - k_2}{k_1 + k_2} \right|^2; \tau = \frac{4k_1 k_2}{\left(k_1 + k_2\right)^2}.$$

11. Коэффициент прозрачности D прямоугольного потенциального барьера конечной ширины

$$D \approx \exp\left[-\frac{2}{\hbar}\sqrt{2m(U-E)}\cdot d\right],$$

где U — высота потенциального барьера; E — энергия частицы; d — ширина барьера.

12. Уравнение Шредингера для линейного гармонического осциллятора в квантовой механике

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - \frac{m\omega_0^2 x^2}{2}) \psi = 0,$$

где $\frac{m\omega_0^2x^2}{2} = U$ — потенциальная энергия осциллятора; m — его масса;

 ω_0 – собственная частота колебаний частицы.

13. Собственные значения энергии гармонического осциллятора

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_0 \ (n = 0, 1, 2,).$$

14. Энергия нулевых колебаний гармонического осциллятора

$$E_0 = \frac{1}{2}\hbar\omega_0.$$

Боровская теория атома водорода. Многоэлектронные атомы

15. Первый постулат Бора (постулат стационарных состояний)

$$mv_n r_n = n \frac{h}{2\pi},$$

где m — масса электрона; v_n — его скорость на n-й орбите; r_n — радиус этой орбиты; h — постоянная Планка; n - главное квантовое число (n=1,2...).

16. Радиус *n*-й стационарной орбиты

$$r_n = r_1 n^2,$$

где r_1 – радиус первой боровской орбиты.

17. Скорость электрона на *n*-й стационарной орбите

$$v_n = v_1 \frac{1}{n}$$

где v_1 – его скорость на первой орбите.

18. Второй постулат Бора (правило частот)

$$h\nu = E_n - E_k,$$

где E_k и E_n — соответствующие значения энергии электрона в атоме до и после излучения (поглощения).

19. В водородоподобном ионе потенциальная энергия U(r) электрона имеет вид

$$U(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r},$$

где Z — порядковый номер водородоподобного иона (для атома водорода Z = 1); e — заряд электрона и \mathcal{E}_0 — электрическая постоянная.

20. Энергия электрона E_n в водородоподобном ионе

$$E_n = -\frac{Z^2 e^4 m}{32\pi^2 \varepsilon_0^2 \hbar^2 n^2}.$$

21. Энергия ионизации E_i и потенциал ионизации φ_i водородоподобного иона

$$E_i = E_1 = -13,6Z^2 \ni B,$$

$$\varphi_i = \frac{E_i}{|e|}.$$

22. Формула, описывающая серии в спектре водородоподобного иона

$$v = \frac{c}{\lambda} = Z^2 Rc \left(\frac{1}{k^2} - \frac{1}{n^2} \right),$$

где v — частота спектральной линии в спектре атома водорода; k и n — номера орбит; c — скорость распространения света в вакууме;

R — постоянная Ридберга, равная $R = \frac{e^4 m}{8\varepsilon_0^2 h^3 c} = 1,097 \cdot 10^7$ м ⁻¹, k

определяет серию (k = 1, 2, 3, ...), n определяет отдельные линии соответствующей серии; так, в спектре испускания n = k + 1, k + 2, ...

23. Серии спектра испускания атомарного водорода:

при k=1, n=2, 3, 4,... – серия Лаймана в ультрафиолетовой области;

при k = 2, n = 3, 4, 5,... – серия Бальмера в видимой области;

при k = 3, n = 4, 5, 6,... – серия Пашена;

при k = 4, n = 5, 6, 7,... – серия Бреккета в инфракрасной области;

при k = 5, n = 6, 7, 8,... – серия Пфунда.

- 24. Состояние электрона в многоэлектронном атоме полностью задано четырьмя квантовыми числами:
 - главным n (n = 1, 2, 3, ...),
 - орбитальным l (l = 0, 1, 2, ..., n 1),
 - магнитным m_l $(m_i = 0, \pm 1, \pm 2, ... \pm l),$
 - магнитным спиновым m_s ($m_s = \pm \frac{1}{2}$).
- 25. Момент импульса (механический орбитальный момент) электрона

$$L_{l} = \hbar \sqrt{l(l+1)}.$$

26. Проекция момента импульса на OZ – направление внешнего магнитного поля

$$L_{lz} = \hbar m_l$$
.

27. Правила отбора для орбитального и магнитного квантовых чисел

$$\Delta l = \pm 1$$
, $\Delta m_l = 0$, ± 1 .

28. Спин (собственный механический момент импульса) электрона

$$L_{s} = \hbar \sqrt{s(s+1)},$$

где s – спиновое квантовое число (s = 1/2).

29. Проекция спина на OZ – направление внешнего магнитного поля

$$L_{sz} = \hbar m_s$$
.

- 30. Принцип Паули. В атоме не может находиться два (и более) электрона, характеризуемых одинаковым набором четырех квантовых чисел: n, l, m_l , m_s .
- 31. Максимальное число электронов Z(n), которые могут находиться в состояниях с главным квантовым числом n

$$Z(n) = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2.$$

32. Распределение электронов в атоме по состояниям с одинаковыми значениями n, но разными l, записывается с помощью символов, представленных в таблице. Здесь приведены состояния, возможные для электронов, находящихся на уровне с n=6.

Таблица 3

Значение квантового числа <i>l</i>	орбитального	0	1	2	3	4	5
Символ		S	p	d	f	g	h

Электронная конфигурация записывается следующим образом: число, стоящее слева перед символом, означает главное квантовое число n, а сам символ отвечает тому или иному значению орбитального квантового числа l (например, обозначению 6p отвечает электрон с n =6 и l =1; $6p^2$ означает, что таких электронов в атоме 2, и т.д.).

3.3. Примеры решения задач

Пример 1.

Выведите закон дисперсии волн де Бройля, т. е. зависимость фазовой скорости волн де Бройля от их длины волны. Рассмотрите случаи: а) нерелятивистский; б) релятивистский.

Дано: Волны де Бройля.

Найти: $v_{\varphi}(\lambda)$.

Решение.

Волна де Бройля описывает волновые свойства свободно движущейся частицы. Фазовая скорость v_{φ} частицы массой m , свободно движущейся со скоростью v

$$v_{\varphi} = \frac{\omega}{k} = \frac{E}{p},$$

где $E = \hbar \omega$ – энергия; $p = \hbar k$ – импульс частицы ($k = \frac{2\pi}{\lambda}$ – волновое число).

а) Обозначим массу покоя частицы m_0 .

Тогда для нерелятивистской частицы $E = \frac{p^2}{2m_0}$,

$$v_{\varphi} = \frac{E}{p} = \frac{p}{2m_0} = \frac{h}{2m_0\lambda}.$$

б) Для релятивистской частицы связь энергии и импульса дается уравнением $E=\sqrt{p^2c^2+E_0^2}$, где $E=mc^2$ – полная энергия, $E_0=m_0c^2$

— энергия покоя частицы,
$$m=\frac{m_0}{\sqrt{1-\left(\frac{\upsilon}{c}\right)^2}}$$
 .
$$\upsilon_\varphi=\frac{E}{p}=\frac{\sqrt{p^2c^2+E_0^2}}{p}=c\sqrt{1+\left(\frac{E_0}{pc}\right)^2}=c\sqrt{1+\left(\frac{m_0c\lambda}{h}\right)^2}\;.$$

Пример 2.

Электрон находится в одномерной прямоугольной потенциальной яме шириной l с бесконечно высокими стенками. Определить вероятность W обнаружения электрона в крайней

четверти ямы, если электрон находится в возбужденном состоянии (n=4) . Пояснить графически физический смысл полученного результата.

Дано: $0 \le x \le \frac{l}{4}$, n = 4.

Найти: W .

Решение.

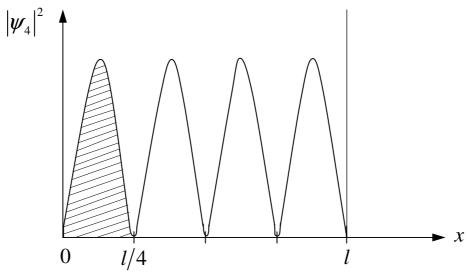


Рис. 11

В одномерном случае вероятность обнаружения частицы в интервале $x_1 \le x \le x_2$ находится из выражения

$$W = \int_{x_1}^{x_2} \left| \psi(x) \right|^2 dx,$$

где $\psi(x)$ – собственная волновая функция частицы.

Нормированная собственная волновая функция, описывающая состояние частицы на энергетическом уровне n=4 имеет вид:

$$\psi_4(x) = \sqrt{\frac{2}{l}} \sin \frac{4\pi x}{l}.$$

Плотность вероятности обнаружения частицы в интервале $0 \le x \le l$ определяется зависимостью

$$\left|\psi_{4}(x)\right|^{2} = \frac{2}{l}\sin^{2}\frac{4\pi x}{l}.$$
 (1)

Вероятность обнаружить частицу в интервале $0 \le x \le \frac{l}{4}$ найдем из выражения

$$W = \frac{2}{l} \int_{0}^{\frac{l}{4}} \sin^2 \frac{4\pi x}{l} dx.$$
 (2)

Понизим степень в подынтегральном выражении, использовав замену $\sin^2 \alpha = \frac{1}{2}(1-\cos 2\alpha)$, после чего разобьём интеграл на два:

$$W = \frac{2}{l} \int_{0}^{\frac{l}{4}} \sin^{2} \frac{4\pi x}{l} dx = \frac{1}{l} \int_{0}^{\frac{l}{4}} \left(1 - \cos \frac{8\pi x}{l} \right) dx = \frac{1}{l} \left[\frac{l}{4} - \frac{l}{8\pi} \sin \frac{8\pi x}{l} \Big|_{0}^{\frac{l}{4}} \right] =$$

$$= \frac{1}{4} - \frac{l}{8\pi} (\sin 2\pi - \sin 0) = \frac{1}{4}.$$

На рис. 11 приведена зависимость (1), показывающая распределение плотности вероятности обнаружения частицы по ширине потенциальной ямы. Заштрихованная площадь числено равна вероятности обнаружения частицы в крайней четверти ямы. В силу симметрии задачи эта четверть может быть выбрана и справа, что легко проверить подстановкой в (2) пределов интегрирования $x_1 = \frac{3}{4}l$, $x_2 = l$.

Пример 3.

Электрон находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Ширина ямы такова, что энергетические уровни расположены весьма густо. Найти плотность уровней $\frac{dn}{dE}$, т. е. их число на единичный интервал энергии, в зависимости от E. Вычислить $\frac{dn}{dE}$ для E=1 эВ, если l=1 см.

Дано: E = 1 эВ, l = 0.01 м.

Найти: $\frac{dn}{dE}$.

Решение.

Собственная энергия частицы массы m на n-м энергетическом уровне в бесконечно глубокой прямоугольной потенциальной яме определяется выражением

$$E_n = E = \frac{\pi^2 \hbar^2}{2ml^2} n^2 \ (n = 1, 2, 3...).$$

Отсюда

$$n = \sqrt{\frac{2ml^2E}{\pi^2\hbar^2}} = \frac{l}{\pi\hbar}\sqrt{2mE} \ . \tag{1}$$

Продифференцируем (1):

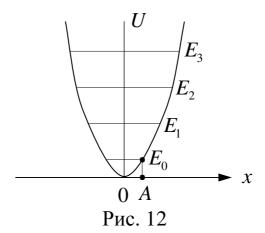
$$\frac{dn}{dE} = \frac{l}{\pi\hbar}\sqrt{2m}\frac{1}{2\sqrt{E}} = \frac{l}{\pi\hbar}\sqrt{\frac{m}{2E}} = 8\cdot10^6$$
 уровней/эВ.

Пример 4.

Рассматривая математический маятник массой $m=100\ \mbox{г}$ и длиной $l=0,5\ \mbox{м}$ в виде гармонического осциллятора, определить классическую амплитуду A маятника, соответствующую энергии нулевых колебаний этого маятника.

 \mathcal{L} ано: m = 0,1 кг, l = 0,5 м, n = 0.

Найти: А. Решение.



Потенциальная энергия одномерного гармонического осциллятора меняется по закону $U(x) = \frac{kx^2}{2}$, где $k = m\omega^2$; ω – собственная частота осциллятора, в нашем случае

$$\omega = \sqrt{\frac{g}{l}} \,. \tag{1}$$

Энергия квантового гармонического осциллятора принимает ряд дискретных значений

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega \ (n = 0, 1, 2...).$$

Минимальное возможное значение энергии равно $E_0 = \frac{1}{2}\hbar\omega$ и называется энергией нулевых колебаний. На рис. 12 дана схема энергетических уровней гармонического осциллятора.

В произвольном положении осциллятора в нулевом состоянии $E_0 = U + T$, где T — кинетическая энергия. При x = A $E_0 = U$, или

$$rac{\hbar\omega}{2} = rac{m\omega^2 A^2}{2}$$
, откуда
$$A = \sqrt{rac{\hbar}{m\omega}} \,. \tag{2}$$

Подставляя в (2) выражение (1), получим

$$A = \sqrt{\frac{\hbar}{m} \sqrt{\frac{l}{g}}} = 1,5 \cdot 10^{-17} \text{ M}.$$

Пример 5.

массой т и энергией Частица с \boldsymbol{E} налетает слева на бесконечной потенциальный барьер Найти: ширины. отражения Rбарьера $E > U_0$; коэффициент OT при 6 - эффективную глубину проникновения частицы в область <math>x > 0при $E\!<\!U_0$, т. е. расстояние от границы барьера до точки, где плотность вероятности нахождения частицы уменьшается в e раз.

Дано:
$$m, E, U_0, a$$
) $E > U_0, б$) $E < U_0, \frac{|\psi(0)|^2}{|\psi(x_0)|^2} = e$.

Найти: a) R, б) x_0 .

Решение.

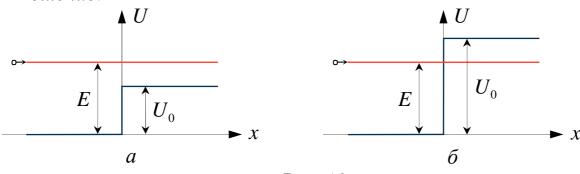


Рис. 13

а) Коэффициент отражения от низкого потенциального барьера $(E>U_0)$ выражается формулой

$$R = \left| \frac{K_1 - K_2}{K_1 + K_2} \right|^2, \tag{1}$$

где K_1 , K_2 — волновые числа электронов при x < 0 и x > 0, соответственно. Связь k с импульсом частицы $k = \frac{2\pi}{\lambda} = \frac{2\pi}{h} p = \frac{p}{h}$.

При x<0 $k_1=\frac{p_1}{\hbar}=\frac{\sqrt{2mE}}{\hbar}$; при x>0 $k_2=\frac{p_2}{\hbar}$. Учтем, что $\frac{P_2^2}{2m}=\left(E-U_0\right);$ тогда $K_2=\frac{1}{\hbar}\sqrt{2m\left(E-U_0\right)}$.

Тогда выражение (1) можно преобразовать следующим образом:

$$R = \left| \frac{p_1 - p_2}{p_1 + p_2} \right|^2 = \left| \frac{1 - \frac{p_2}{p_1}}{1 + \frac{p_2}{p_1}} \right|^2 = \left| \frac{1 - \sqrt{1 - \frac{U_0}{E}}}{1 + \sqrt{1 - \frac{U_0}{E}}} \right|^2.$$

б) При x > 0 волновая функция частицы имеет вид

$$\psi(x) = ae^{-\aleph x},$$

где

$$\aleph = \frac{1}{\hbar} \sqrt{2m(U_0 - E)}.$$

На расстоянии x_0 от границы барьера

$$\frac{\left|\psi(0)\right|^2}{\left|\psi(x_0)\right|^2} = \frac{a^2}{a^2e^{-2\aleph x_0}} = e\,,$$
 откуда $2\aleph x_0=1$, или $x_0=\frac{1}{2\aleph}=\frac{\hbar}{2\sqrt{2m(U_0-E)}}$.

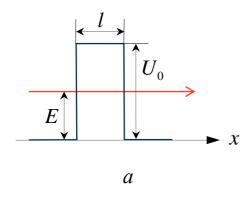
Пример 6.

Найти вероятность D прохождения электроном с энергией E потенциального барьера, форма которого указана на рис. a) и δ).

Дано: m, q, U_0, l, E .

Найти: Д.

Решение.



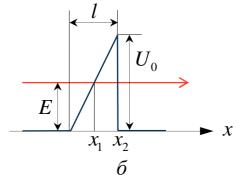


Рис. 14

Прозрачность одномерного потенциального барьера конечной ширины определяется выражением

$$D \approx \exp\left[-\frac{2}{\hbar} \int_{x_1}^{x_2} \sqrt{2m(U(x) - E)} dx\right],\tag{1}$$

где x_1 , x_2 – координаты точек, между которыми U(x) > E.

a)
$$U = U_0 = const$$
; $D = \exp \left[-\frac{2}{\hbar} \sqrt{2m(U_0 - E)} \cdot l \right]$.

б) В этом случае зависимость $U(x) = \frac{U_0}{l}x$, $x_1 = \frac{El}{U_0}$, $x_2 = l$.

$$D = \exp\left[-\frac{2\sqrt{2m}}{\hbar} \int_{x_1}^{x_2} \sqrt{\left(\frac{U_0}{l}x - E\right)} dx\right] = \exp\left[-\frac{2\sqrt{2m}}{\hbar} \int_{\frac{El}{U_0}}^{l} \sqrt{\left(\frac{U_0}{l}x - E\right)} dx\right] = \exp\left[-\frac{2\sqrt{2m}}{\hbar} \int_{\frac{El}{U_0}$$

$$= \exp \left[-\frac{2l\sqrt{2m}}{\hbar U_0} \frac{2}{3} \left(\frac{U_0}{l} x - E \right) \Big|_{\frac{El}{U_0}}^{l} \right] = \exp \left[-\frac{4l\sqrt{2m}}{3\hbar U_0} (U_0 - E)^{\frac{3}{2}} \right].$$

Пример 7.

Основываясь на том, что потенциал ионизации водородного атома равен 13,6 В, найти длину волны λ_1 первой линии и длину волны λ_∞ границы серии: а) Лаймана; б) Бальмера.

Дано: $\varphi_i = 13,6$ В.

Haŭmu: λ_{12} , $\lambda_{1\infty}$, λ_{23} , $\lambda_{2\infty}$.

Решение.

Согласно второму постулату Бора

$$\frac{hc}{\lambda} = E_n - E_m. \tag{1}$$

Так как собственное значение энергии атома водорода

$$E_n = -\frac{Rhc}{n^2},$$

где $Rhc = E_i = e \cdot \varphi_i$ — энергия ионизации невозбужденного атома, то (1) запишется так:

$$\frac{hc}{\lambda} = e\varphi_i \left(\frac{1}{m^2} - \frac{1}{n^2}\right), \text{ или } \lambda = \frac{hc}{e\varphi_i \left(\frac{1}{m^2} - \frac{1}{n^2}\right)}.$$
 (2)

В (2) m — номер орбиты, на которую переходит электрон в спектре испускания; n — номер орбиты, с которой переходит электрон. Для серии Лаймана $m=1, n=2,3,...,\infty$; для серии Бальмера $m=2, n=3,4,...,\infty$.

Далее вычисляем:

$$\lambda_{12} = \frac{hc}{e\varphi_i \left(1 - \frac{1}{4}\right)} = 122 \text{ HM};$$

$$\lambda_{1\infty} = \frac{hc}{e\varphi_i} = 91 \text{ HM};$$

$$\lambda_{23} = \frac{hc}{e\varphi_i \left(\frac{1}{4} - \frac{1}{9}\right)} = 657 \text{ HM};$$

$$\lambda_{2\infty} = \frac{hc}{e\varphi_i \left(\frac{1}{4} - \frac{1}{9}\right)} = 365 \text{ HM}.$$

Пример 8.

Электрон выбит из невозбужденного атома водорода фотоном с энергией ε = 17,7 эВ. Определить скорость υ электрона за пределами атома.

 \mathcal{L} ано: $\varepsilon = 17,7$ эВ, $m = 9,1 \cdot 10^{-31}$ кг.

Найти: v.

Решение.

Энергия налетающего фотона распределяется так:

$$\varepsilon = E_i + T$$
,

где E_i — энергия ионизации атома; T — кинетическая энергия электрона вдали от ядра.

$$T = \mathcal{E} - E_i$$
, или $\frac{mv^2}{2} = \mathcal{E} - E_i$, откуда $v = \sqrt{\frac{2(\mathcal{E} - E_i)}{m}} = 1, 2 \cdot 10^6$ м/с.

Пример 9.

Определите, во сколько раз орбитальный момент импульса L_e электрона в f -состоянии больше, чем для электрона в p -состоянии.

Дано: f -состояние, p -состояние.

Найти:
$$\frac{L_{l_1}}{L_{l_2}}$$
.

Решение.

Обозначим L_{l_1} орбитальный момент импульса электрона в f - состоянии, а L_{l_2} – в p -состоянии.

f -состояние характеризуется орбитальным квантовым числом l=3, а p -состояние — орбитальным квантовым числом l=1. Момент импульса (механический орбитальный момент) электрона

$$L_{l}=\hbar\sqrt{l(l+1)}.$$

Отсюда
$$\frac{L_{l_1}}{L_{l_2}} = \sqrt{6} = 2,45$$
.

3.4. Варианты индивидуальных заданий

Таблица 4

	1									<u> </u>	аолица 4
№		Номера задач									
1	1	15	32	38	55	71	117	153	22	32	91
2	2	16	33	39	56	72	118	154	23	33	92
3	3	17	34	40	57	73	119	155	24	34	141
4	4	18	35	41	58	74	120	156	25	35	142
5	5	19	36	42	59	75	121	157	26	36	143
6	6	20	37	43	60	76	122	158	27	37	144
7	7	21	32	44	61	77	123	159	28	32	145
8	8	22	33	45	62	78	124	160	29	33	146
9	9	23	34	46	63	79	125	161	30	34	147
10	10	24	35	47	64	80	126	162	31	35	148
11	11	25	36	48	65	81	127	163	15	36	149
12	12	26	37	49	66	82	128	164	16	37	150
13	13	27	32	50	67	83	129	165	17	32	151
14	14	28	33	51	68	84	130	166	18	33	152
15	1	29	34	52	69	85	131	167	19	34	117
16	2	30	35	53	70	86	132	168	20	35	118
17	3	31	36	54	55	87	133	169	21	36	119
18	4	15	37	38	56	88	134	170	22	37	120
19	5	16	32	39	57	89	135	171	23	32	121
20	6	17	33	40	58	90	136	172	24	33	122
21	7	18	34	41	59	91	137	173	25	34	123
22	8	19	35	42	60	92	138	174	26	35	124
23	9	20	36	43	61	93	139	175	27	36	125
24	10	21	37	44	62	94	140	176	28	37	126
25	11	22	32	45	63	95	141	153	29	32	127
26	12	23	33	46	64	96	142	154	30	33	128
27	13	24	34	47	65	97	143	155	15	95	129
28	14	25	35	48	66	98	144	156	16	96	130
29	1	26	36	49	67	99	145	157	17	97	117
30	2	27	37	50	68	100	146	158	18	98	118
31	3	28	32	51	69	101	147	159	19	99	119
32	5	29	33	52 53	70	102	148	160	20	100	120
33		30	34		55	103	149	161	21	101	121
34	6 7	31	35	54 38	56 57	104	150	162	22	102	122
	8			39	_	105	151	163	23	103	123
36 37	9	16 17	37	40	58 59	106 107	152 117	164	24	104 105	124
					_			165		_	125
38 39	10	18 19	33	41	60	108 109	118 119	166	26 27	106	126 127
40	12	20	35	42	61	1109	120	167 168	28	107	127
40	13	20	36	43	63		120	169	29	108	
41	13	21 22	36	44	64	111 112	121	170	30	_	129
42	14	22	32	45	65	112	122	170	31	110	130
43	2	23	33	46	66	113	123	172	15	111	131
45	3	25	34	48	67	114	124	173	16	113	133
46	5	26	35	49	68	116	125	173	17	113	134
47	6	27	36	50	69	89	120	175	18	115	135
48	7	28	37	51	70	90	127	176	19	116	136
49	8	29	32	52	55	91	128	_	20	89	137
		_		_		_	_	161		_	
50	9	30	33	53	56	92	130	162	21	90	138

ПРИЛОЖЕНИЕ

Таблица П1

Основные физические константы

	on icorne rolleralitible
Ускорение свободного падения	$g = 9.81 \text{ m/c}^2$
Гравитационная постоянная	$G = 6.67 \cdot 10^{-11} \mathrm{m}^3 / (\mathrm{kg} \cdot \mathrm{c}^2)$
Число Авогадро	$N_{\rm A} = 6.02 \cdot 10^{23} {\rm моль}^{-1}$
Универсальная газовая	$R = 8.31 \; \text{Дж/(моль·К)}$
постоянная	
Постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
Заряд электрона	$e = -1,60 \cdot 10^{-19}$ Кл
Масса покоя электрона	$m = 9,1 \cdot 10^{-31} \text{ K}\Gamma$
Заряд протона	$q = 1,60 \cdot 10^{-19} \text{ K}\pi$
Масса покоя протона	$m_p = 1,67 \cdot 10^{-27} \text{ кг}$
Скорость света в вакууме	$c = 3.00 \cdot 10^8 \text{ m/c}$
Электрическая постоянная	$\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/M$
Постоянная Планка	$h = 6.63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$
Атомная единица массы	$1 \text{ a.e.м} = 1,660 \cdot 10^{-27} \text{ кг}$
Показатель преломления воды	n = 1,33
Показатель преломления стекла	n = 1,5
Постоянная Стефана-Больцмана	$\sigma = 5.67 \cdot 10^{-8} \text{ BT/(M}^2 \text{K}^4)$
Постоянная Вина в законе	$c' = 2.9 \cdot 10^{-3} \text{ M} \cdot \text{K}$
смещения	$C = 2,9 \cdot 10 M^{*}K$
Постоянная Вина	$c'' = 1,29 \cdot 10^{-5} \text{ BT/(M}^3 \text{K}^5)$

Таблица П2 Периодическая система химических элементов Д.И. Менделеева

		DEPMON	MUECUA	a cucre	MA 205	MEUTOR	VII	VIII	20
1	H 1.00794 1	ПЕРИОД	Д.И.	WEHDEN		MEHIOB	(H)	2 He 4.002602 FEANN	-
2	Li 5,941	Ве 9,012182 БЕРИЛЛИЙ	5 10,811 B	6 12,011 УГЛЕРОД	7 14.00674 A30T	8 15.9994 КИСЛОРОД	9 F 18,9984032 PTOP	10 Ne 20,1797 NEOH	
3	Na 11 22,989768 HATPHÑ	Mg 12 MATHHŮ 24.3050	13 26.981539 АЛ	14 28.0855 Si KPENHNÑ	15 P 30 973762 POCOOP	16 S 32.066 CEPA	17 C1 35.4527 XAOP	18 Ar 39.948 APTON	Периодический закон открыт Д.И.МЕНДЕЛЕЕВЫМ в 1889 году
4	K 39,0903	Са 40,078	SC 44,955910 CHAHANÑ	Ti 22	V 23 50,9415 Ванадии	Cr 51,9961	Mn 25 54,93805 MAPFAHEU	Fe 26 MERE30 55,847	CO 27 Ni 28 NO 58,93320 NHHEAL 58,69
- 47	29 Cu 63,549 NEAL	30 Zn 65,39 цинк	31 69,723 Ga ГАЛЛИЙ	32 72.61 Ge	33 74,92159 МЫШЬЯК	34 Se 78.96 CEAEN	35 79,904 Br 5PON	36 Kr 83.80 KPNNTOH	
5	Rb 37 65,4678 РУБИДИЙ	Sr 38 стронций	39 88,90585 NTTPNÜ	Zr 91,224 UNPKOHNŮ	П _{92,90638} ниобий	Мо 42 молибден	Тс 43 97,9072 ТЕХНЕЦИЙ	Ru 101,07	Rh 102,90550 РОДНЙ 106,42
	47 Ag 187,8682 CEPESPO	48 Cd 112,411 KAANNN	49 114,82 In индий	5G Sn 118,710 OAOBO	51 Sb 121.75 CYPLMA	52 Te 127,60 TEAAYP	53 126,90447 NOA	54 Xe 131,29 KCEHOH	
6	Cs 55 132,90543 UE3NÚ	Ва 56 137,327	La Lu"	Нf 72 178.49	Ta 73 180,9479 TAHTAN	74 183,85 Вольфрам	Re 75 186.207 PEHNÑ	OS 190,2	Ir 77 Pt 78 195,08 платина
	79 Au 196,96654 30,000	80 Hg 200,59 PTYTL	81 204,3833 ТАЛЛИЙ	82 Pb CBNHEU	83 208,98037 BHCMYT	84 208,9824 Po ROADHNÁ	85 209,9871 ACTAF	86 Rn 222,0176 PAAOH	3 Атомный номер 5,941 Относительная атомная масса
7	Fr 87 923,0197 9PAHUNÚ	Ra 88 226,0254 РАДИЙ	Ac 45 (Lr)103 **	(Ku) 104 261,11 (КУРЧАТОВИЙ)	(Ns) 105 262,114 (НИЛЬСБОРИИ)	106 263,118	107 262,12	- 5-200Menty - p-300Menty - d-200Menty - d-200Menty	Относительные этомные массы приведены по Международной таблице
1000		THE PERSON NAMED IN		* 5	антано	иды			
138,9055 JANTAN	140,115	о.90765 Nd 0.90765 144,2 АЗЕОДИИ ИЕОДИИ	4 144,9127	CAMAPHÑ EBPON	965 157.25 ИЙ ГАДОЛИНИЙ	158,92534 ТЕРБИЙ ДИО	Но 162.50 Но 164.93032 ГОЛЬМИЙ	167,26	Гт 69 Уь 70 Lu 71 173,04 174,967 иттербий лютеций
	0				актино				
AC 827,027	8 232,0301 23	238,028 01,03588 238,028 01AKTHHHĤ YPAH	237,0482	Pu 94 A1 244,0642 RAYTOHHĤ AMEPH	43,0614 247,0703	247,0703	F 98 Es 242,0587 252,1 11000PHHĤ 3ĤHWTEÑH	257,0951	Md 101 (No)102 (Lr)103 250,100 енделевий (нобелий) (лоуренсий)

Свойства некоторых газов	
Молярная масса воздуха	0,029 кг/моль

Таблица П4 Масса и энергия покоя некоторых элементарных частиц

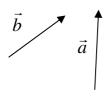
				'.	
Постино	m	0	E_0		
Частица	×10 ⁻²⁷ , кг	а.е.м.	×10 ⁻¹⁰ , Дж	МэВ	
Электрон	$9,11\cdot10^{-4}$	0,00055	$8,16\cdot10^{-4}$	0,511	
Протон	1,672	1,00728	1,50.10	938	
Нейтрон	1,675	1,00867	1,5	939	
α-частица	6,64	4,00149	5,96	3733	
Нейтральный	0,241	0,14498	0,216	135	
π-мезон	0,241	0,14498	0,210	133	

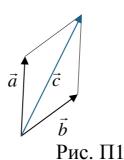
Таблица П5 Приставки для образования десятичных кратных и дольных единиц

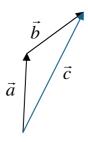
Приставка	ì		Приставка		
Наимено-	Обозна-	Множи-	Наимено-	Обозна-	Множи-
вание	чение	тель	вание	чение	тель
тера	T	10^{12}	милли	M	10^{-3}
гига	Γ	109	микро	МК	10^{-6}
мега	M	10^{6}	нано	Н	10 ⁻⁹
кило	К	10^3	пико	П	10^{-12}
санти	c	10 ⁻²	фемто	ф	10 ⁻¹⁵

Некоторые сведения из математики

- 1. Скаляры и векторы
- a) Сложение векторов $\vec{c} = \vec{a} + \vec{b}$







б) Вычитание векторов

Вычитание вектора \vec{a} из вектора \vec{b} можно заменить сложением \vec{c} с $(-\vec{b})$:

$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + \left(-\vec{b}\right).$$

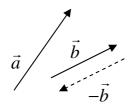
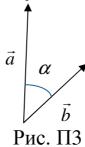
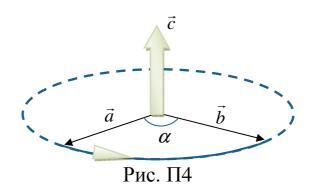


Рис. П2

в) Скалярное произведение двух векторов $\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \alpha$



c) Векторное произведение двух векторов $\vec{c} = \left[\vec{a} \vec{b} \right]$, $c = a \cdot b \cdot \sin \alpha$. Направление вектора \vec{c} находится по правилу буравчика.



2. Формулы алгебры и тригонометрии Теорема косинусов (рис. П5): $c^2 = a^2 + b^2 - 2ab\cos\alpha$

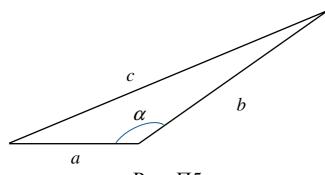


Рис. П5

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
, $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$,
 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$, $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$.

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2},$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2},$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}.$$

Корни приведенного квадратного уравнения $x^2 + px + q = 0$:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$$

$$\ln a + \ln b = \ln(ab)$$
, $\ln a - \ln b = \ln\left(\frac{a}{b}\right)$

3. Формулы дифференциального и интегрального исчислений

$$\frac{d}{dx}(x^n) = nx^{n-1},$$

$$\frac{d}{dx}(e^x) = e^x,$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x},$$

$$\frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2},$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax},$$

$$\frac{d}{dx}(a^x) = a^x \ln|a|,$$

$$(uv)' = u'v + v'u,$$

$$\frac{d}{dx}(\cos x) = -\sin x,$$

$$\frac{d(\cos x)}{dx} = -\sin x,$$

$$\frac{d(\sin x)}{dx} = \cos x,$$

$$\int \frac{dx}{x} = \ln|x|, \quad *)$$

$$\int \frac{dx}{x} = -\frac{1}{x},$$

$$\int \sin x dx = -\cos x,$$

$$\int \cos x dx = \sin x$$

$$\int e^x dx = e^x.$$

^{*)} Здесь и далее постоянная интегрирования опускается.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Савельев И.В. Курс общей физики: В 3-х т. М.: Наука, 2000. Т.1. – 350 с.
- 2. Трофимова Т.И. Курс физики. М.: Высшая школа, 1998. 542 с.
- 3. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2000. 718 с.
- 4. Сборник вопросов, упражнений и задач по курсу общей физики в системе РИТМ. Ч.3. / Е.Е. Нестюрина, Н.А. Ретивов. Таганрог: Изд-во ТРТУ, 1999. 110 с.
- 5. Чертов А.Г., Воробьев А.А. Задачник по физике. М.: Высшая школа, 1997. 544 с.
- 6. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука, 1990. 400 с.
- 7. Трофимова Т.И. Сборник задач по курсу физики: Учебное пособие для студентов втузов. М.: Высшая школа, 1991. 303 с.

Гатько Людмила Евстафьевна Редин Александр Александрович Фатеева Валентина Афанасьевна

Учебно-методическое пособие

для выполнения индивидуального задания по дисциплине

Физика

Часть 3

Ответственный за выпуск Редин А.А. Редактор Кочергина Т.Ф. Корректор Селезнева Н.И.

Подписано к печати 28.12.2014 Формат 60х841/16. Усл. п. л. – 5,4. . Уч-изд. л . – 5,0. Заказ № Тираж 10 экз.

Издательство Южного федерального университета 344091, г. Ростов-на-Дону, пр. Стачки, 200/1.

Отпечатано в Секторе обеспечения полиграфической продукцией кампуса в г. Таганроге отдела полиграфической, корпоративной и сувенирной продукции ИПК КИБИ МЕДИА ЦЕНТР ЮФУ.

ГСП 17А, Таганрог, 28, Энгельса, 1. тел. (8634) 371717, 371655.